BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 32910405)

  • 1. Utilization of Portland cement with limestone powder and cement kiln dust for stabilization/solidification of oil-contaminated marl soil.
    Mustafa YMH; Al-Amoudi OSB; Ahmad S; Maslehuddin M; Al-Malack MH
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):3196-3216. PubMed ID: 32910405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization/solidification of heavy metal-contaminated marl soil using a binary system of cement and fuel fly ash.
    Ahmad S; Bahraq AA; Khalid HR; Alamutu LO
    Environ Monit Assess; 2023 Dec; 195(12):1557. PubMed ID: 38040928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils.
    Moon DH; Wazne M; Yoon IH; Grubb DG
    J Hazard Mater; 2008 Nov; 159(2-3):512-8. PubMed ID: 18395336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.
    Moon DH; Grubb DG; Reilly TL
    J Hazard Mater; 2009 Sep; 168(2-3):944-51. PubMed ID: 19339110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing long-term performance of stabilized Zn-contaminated dredged sediment slurry treated with the PHDVPSS method.
    Mastoi AK; Bhanbhro R; Chen X; Fatah TA; Mehroz A
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19262-19272. PubMed ID: 34714480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust.
    Yoon IH; Moon DH; Kim KW; Lee KY; Lee JH; Kim MG
    J Environ Manage; 2010 Nov; 91(11):2322-8. PubMed ID: 20643499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Freeze-Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils.
    Yang Z; Wang Y; Li D; Li X; Liu X
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New ternary blend limestone calcined clay cement for solidification/stabilization of zinc contaminated soil.
    Reddy VA; Solanki CH; Kumar S; Reddy KR; Du YJ
    Chemosphere; 2019 Nov; 235():308-315. PubMed ID: 31260871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Industrial By-Products on Unconfined Compressive Strength of Solidified Organic Marine Clayey Soils.
    Park CG; Yun SW; Baveye PC; Yu C
    Materials (Basel); 2015 Aug; 8(8):5098-5111. PubMed ID: 28793493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelationships among geotechnical and leaching properties of a cement-stabilized contaminated soil.
    Kogbara RB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(2):149-157. PubMed ID: 27791485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils.
    Liu J; Zha F; Deng Y; Cui K; Zhang X
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28248-28257. PubMed ID: 29022206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization and solidification of arsenic contaminated silty sand using alkaline activated slag.
    Komaei A; Noorzad A; Ghadir P
    J Environ Manage; 2023 Oct; 344():118395. PubMed ID: 37343471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils.
    Li W; Ni P; Yi Y
    Sci Total Environ; 2019 Jun; 671():741-753. PubMed ID: 30939327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash.
    Yin CY; Mahmud HB; Shaaban MG
    J Hazard Mater; 2006 Oct; 137(3):1758-64. PubMed ID: 16784809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization.
    Du YJ; Wei ML; Reddy KR; Jin F; Wu HL; Liu ZB
    J Environ Manage; 2014 Dec; 146():179-188. PubMed ID: 25173726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing road performance of lead-contaminated soil through biochar-cement solidification: An experimental study.
    Zou Z; Qin Y; Zhang T; Tan K
    J Environ Manage; 2023 Dec; 348():119315. PubMed ID: 37844401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solidification/stabilization of lead-contaminated soil using alkali-activated volcanic ash.
    Molaei MA; Miraki H; Morovati M; Ghadir P; Javadi AA
    Environ Sci Pollut Res Int; 2024 Jun; 31(26):38465-38484. PubMed ID: 38806981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of strength and leaching characteristics of heavy metal-contaminated soils solidified/stabilized by cement/fly ash.
    Zha F; Ji C; Xu L; Kang B; Yang C; Chu C
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30206-30219. PubMed ID: 31422534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of long-term freezing-thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil.
    Yang Z; Zhang K; Li X; Ren S; Li P
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38185-38201. PubMed ID: 36576635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physico-mechanical and microstructural behaviour of high-water content zinc-contaminated dredged sediment treated with integrated approach PHDVPSS.
    Mastoi AK; Pu H; Chen X; Nyanzi AS; Jhatial AA
    Environ Sci Pollut Res Int; 2021 Nov; 28(41):58331-58341. PubMed ID: 34115301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.