These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32910661)
1. Control of the 3-Fold Symmetric Shape of Group III-Nitride Quantum Dots: Suppression of Fine-Structure Splitting. Yeo HS; Lee K; Cho JH; Park SH; Cho YH Nano Lett; 2020 Dec; 20(12):8461-8468. PubMed ID: 32910661 [TBL] [Abstract][Full Text] [Related]
3. Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots. Wang J; Gong M; Guo GC; He L Phys Rev Lett; 2015 Aug; 115(6):067401. PubMed ID: 26296130 [TBL] [Abstract][Full Text] [Related]
4. Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy. Abbarchi M; Mano T; Kuroda T; Ohtake A; Sakoda K Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33578657 [TBL] [Abstract][Full Text] [Related]
5. Ultraclean Single Photon Emission from a GaN Quantum Dot. Arita M; Le Roux F; Holmes MJ; Kako S; Arakawa Y Nano Lett; 2017 May; 17(5):2902-2907. PubMed ID: 28434223 [TBL] [Abstract][Full Text] [Related]
6. Generation of Polarization-Entangled Photons from Self-Assembled Quantum Dots in a Hybrid Quantum Photonic Chip. Jin T; Li X; Liu R; Ou W; Zhu Y; Wang X; Liu J; Huo Y; Ou X; Zhang J Nano Lett; 2022 Jan; 22(2):586-593. PubMed ID: 35025517 [TBL] [Abstract][Full Text] [Related]
7. Morphological engineering of aluminum droplet etched nanoholes for symmetric GaAs quantum dot epitaxy. Huang X; Zhong H; Yang J; Liu L; Liu J; Yu Y; Yu S Nanotechnology; 2020 Dec; 31(49):495701. PubMed ID: 32990269 [TBL] [Abstract][Full Text] [Related]
8. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Muller A; Fang W; Lawall J; Solomon GS Phys Rev Lett; 2009 Nov; 103(21):217402. PubMed ID: 20366067 [TBL] [Abstract][Full Text] [Related]
9. Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55-microm photon emitter. He L; Gong M; Li CF; Guo GC; Zunger A Phys Rev Lett; 2008 Oct; 101(15):157405. PubMed ID: 18999641 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of Single-Photon Purity and Coherence of III-Nitride Quantum Dot with Polarization-Controlled Quasi-Resonant Excitation. Jun S; Choi M; Kim B; Morassi M; Tchernycheva M; Song HG; Yeo HS; Gogneau N; Cho YH Small; 2023 Feb; 19(5):e2205229. PubMed ID: 36449654 [TBL] [Abstract][Full Text] [Related]
11. Highly uniform and symmetric epitaxial InAs quantum dots embedded inside Indium droplet etched nanoholes. Yu Y; Zhong H; Yang J; Liu L; Liu J; Yu S Nanotechnology; 2019 Nov; 30(48):485001. PubMed ID: 31469109 [TBL] [Abstract][Full Text] [Related]
12. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Kim J; Wong CY; Scholes GD Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542 [TBL] [Abstract][Full Text] [Related]
14. Effects of electrostatic environment on the electrically triggered production of entangled photon pairs from droplet epitaxial quantum dots. Ramírez HY; Chou YL; Cheng SJ Sci Rep; 2019 Feb; 9(1):1547. PubMed ID: 30733483 [TBL] [Abstract][Full Text] [Related]
15. Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. Huber D; Reindl M; Covre da Silva SF; Schimpf C; Martín-Sánchez J; Huang H; Piredda G; Edlinger J; Rastelli A; Trotta R Phys Rev Lett; 2018 Jul; 121(3):033902. PubMed ID: 30085806 [TBL] [Abstract][Full Text] [Related]
16. Exploring the Potential of Patra SK; Schulz S Nano Lett; 2020 Jan; 20(1):234-241. PubMed ID: 31760752 [TBL] [Abstract][Full Text] [Related]
17. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Ghali M; Ohtani K; Ohno Y; Ohno H Nat Commun; 2012 Feb; 3():661. PubMed ID: 22314357 [TBL] [Abstract][Full Text] [Related]
18. Proposed Scheme to Generate Bright Entangled Photon Pairs by Application of a Quadrupole Field to a Single Quantum Dot. Zeeshan M; Sherlekar N; Ahmadi A; Williams RL; Reimer ME Phys Rev Lett; 2019 Jun; 122(22):227401. PubMed ID: 31283293 [TBL] [Abstract][Full Text] [Related]
19. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots. Kaniber M; Huck MF; Müller K; Clark EC; Troiani F; Bichler M; Krenner HJ; Finley JJ Nanotechnology; 2011 Aug; 22(32):325202. PubMed ID: 21772067 [TBL] [Abstract][Full Text] [Related]