These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32910939)

  • 1. Spectacle: An interactive resource for ocular single-cell RNA sequencing data analysis.
    Voigt AP; Whitmore SS; Lessing ND; DeLuca AP; Tucker BA; Stone EM; Mullins RF; Scheetz TE
    Exp Eye Res; 2020 Nov; 200():108204. PubMed ID: 32910939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Web-based gene expression analysis-paving the way to decode healthy and diseased ocular tissue].
    Wolf J; Lapp T; Reinhard T; Agostini H; Schlunck G; Lange C
    Ophthalmologie; 2022 Sep; 119(9):929-936. PubMed ID: 35194679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rare Cell Type Detection.
    Jiang L
    Methods Mol Biol; 2019; 1935():79-89. PubMed ID: 30758820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Cell Types from Single-Cell Transcriptomic Data.
    Shekhar K; Menon V
    Methods Mol Biol; 2019; 1935():45-77. PubMed ID: 30758819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-species single-cell transcriptomic analysis of ocular compartment regulons.
    Gautam P; Hamashima K; Chen Y; Zeng Y; Makovoz B; Parikh BH; Lee HY; Lau KA; Su X; Wong RCB; Chan WK; Li H; Blenkinsop TA; Loh YH
    Nat Commun; 2021 Sep; 12(1):5675. PubMed ID: 34584087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical and Bioinformatics Analysis of Data from Bulk and Single-Cell RNA Sequencing Experiments.
    Yu X; Abbas-Aghababazadeh F; Chen YA; Fridley BL
    Methods Mol Biol; 2021; 2194():143-175. PubMed ID: 32926366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH.
    Torre E; Dueck H; Shaffer S; Gospocic J; Gupte R; Bonasio R; Kim J; Murray J; Raj A
    Cell Syst; 2018 Feb; 6(2):171-179.e5. PubMed ID: 29454938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iSeq: Web-Based RNA-seq Data Analysis and Visualization.
    Zhang C; Fan C; Gan J; Zhu P; Kong L; Li C
    Methods Mol Biol; 2018; 1754():167-181. PubMed ID: 29536443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SMaSH: a scalable, general marker gene identification framework for single-cell RNA-sequencing.
    Nelson ME; Riva SG; Cvejic A
    BMC Bioinformatics; 2022 Aug; 23(1):328. PubMed ID: 35941549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annotating cell types in human single-cell RNA-seq data with CellO.
    Bernstein MN; Dewey CN
    STAR Protoc; 2021 Sep; 2(3):100705. PubMed ID: 34458864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.
    Guo M; Wang H; Potter SS; Whitsett JA; Xu Y
    PLoS Comput Biol; 2015 Nov; 11(11):e1004575. PubMed ID: 26600239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collection of cells for single-cell RNA sequencing using high-resolution fluorescence microscopy.
    Segeren HA; Andree KC; Oomens L; Westendorp B
    STAR Protoc; 2021 Sep; 2(3):100718. PubMed ID: 34401784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Express: A database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues.
    Budak G; Dash S; Srivastava R; Lachke SA; Janga SC
    Exp Eye Res; 2018 Mar; 168():57-68. PubMed ID: 29337142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Transcriptome Profiling.
    Shapira G; Shomron N
    Methods Mol Biol; 2021; 2243():311-325. PubMed ID: 33606265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies.
    Schmid KT; Höllbacher B; Cruceanu C; Böttcher A; Lickert H; Binder EB; Theis FJ; Heinig M
    Nat Commun; 2021 Nov; 12(1):6625. PubMed ID: 34785648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization.
    Zhao S; Xi L; Quan J; Xi H; Zhang Y; von Schack D; Vincent M; Zhang B
    BMC Genomics; 2016 Jan; 17():39. PubMed ID: 26747388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.