These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32911387)

  • 21. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?
    Meier MS; Stoessel F; Jungbluth N; Juraske R; Schader C; Stolze M
    J Environ Manage; 2015 Feb; 149():193-208. PubMed ID: 25463583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organic management enhances soil quality and drives microbial community diversity in cocoa production systems.
    Lori M; Armengot L; Schneider M; Schneidewind U; Bodenhausen N; Mäder P; Krause HM
    Sci Total Environ; 2022 Aug; 834():155223. PubMed ID: 35429564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Product Carbon Footprint Protocols: Case Study on Medium-Density Fiberboard in China.
    Wang S; Wang W; Yang H
    Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30241296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transforming agrifood systems in a win-win for health and environment: evidence from organic rice-duck coculture.
    Gao H; Dai L; Xu Q; Gao P; Dou Z
    J Sci Food Agric; 2023 Jan; 103(2):968-975. PubMed ID: 36260409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Below- and aboveground production in cocoa monocultures and agroforestry systems.
    Niether W; Schneidewind U; Fuchs M; Schneider M; Armengot L
    Sci Total Environ; 2019 Mar; 657():558-567. PubMed ID: 30550918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LIFE BEEF CARBON: a common framework for quantifying grass and corn based beef farms' carbon footprints.
    O'Brien D; Herron J; Andurand J; Caré S; Martinez P; Migliorati L; Moro M; Pirlo G; Dollé JB
    Animal; 2020 Apr; 14(4):834-845. PubMed ID: 31666147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios.
    da Silva VP; van der Werf HM; Spies A; Soares SR
    J Environ Manage; 2010 Sep; 91(9):1831-9. PubMed ID: 20452717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global food-miles account for nearly 20% of total food-systems emissions.
    Li M; Jia N; Lenzen M; Malik A; Wei L; Jin Y; Raubenheimer D
    Nat Food; 2022 Jun; 3(6):445-453. PubMed ID: 37118044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon footprint and ammonia emissions of California beef production systems.
    Stackhouse-Lawson KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4641-55. PubMed ID: 22952361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China.
    Yan M; Luo T; Bian R; Cheng K; Pan G; Rees R
    Environ Monit Assess; 2015 Jun; 187(6):332. PubMed ID: 25947895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions.
    Fang K; Yi X; Dai W; Gao H; Cao L
    Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31159212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.
    Torres CMME; Jacovine LAG; Nolasco de Olivera Neto S; Fraisse CW; Soares CPB; de Castro Neto F; Ferreira LR; Zanuncio JC; Lemes PG
    Sci Rep; 2017 Dec; 7(1):16738. PubMed ID: 29196680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador.
    Barraza F; Schreck E; Lévêque T; Uzu G; López F; Ruales J; Prunier J; Marquet A; Maurice L
    Environ Pollut; 2017 Oct; 229():950-963. PubMed ID: 28781181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon footprint of conventional and organic beef production systems: An Italian case study.
    Buratti C; Fantozzi F; Barbanera M; Lascaro E; Chiorri M; Cecchini L
    Sci Total Environ; 2017 Jan; 576():129-137. PubMed ID: 27783931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biogas production by means of an anaerobic-digestion plant in France: LCA of greenhouse-gas emissions and other environmental indicators.
    Lamnatou C; Nicolaï R; Chemisana D; Cristofari C; Cancellieri D
    Sci Total Environ; 2019 Jun; 670():1226-1239. PubMed ID: 31018437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain.
    Del Prado A; Mas K; Pardo G; Gallejones P
    Sci Total Environ; 2013 Nov; 465():156-65. PubMed ID: 23601287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Food-miles and the relative climate impacts of food choices in the United States.
    Weber CL; Matthews HS
    Environ Sci Technol; 2008 May; 42(10):3508-13. PubMed ID: 18546681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of different agricultural organic wastes on soil GHG emissions: During a 4-year field measurement in the North China Plain.
    Li Z; Wang D; Sui P; Long P; Yan L; Wang X; Yan P; Shen Y; Dai H; Yang X; Cui J; Chen Y
    Waste Manag; 2018 Nov; 81():202-210. PubMed ID: 30527036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological challenges in life cycle assessment and carbon budget of organic and conventional agroecosystems: A case from Lithuania.
    Miksa O; Chen X; Baležentienė L; Streimikiene D; Balezentis T
    Sci Total Environ; 2020 Apr; 714():136850. PubMed ID: 32018983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovering terroir in the world of chocolate.
    Nesto B
    Gastronomica (Berkeley Calif); 2010; 10(1):131-35. PubMed ID: 21539057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.