These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32911404)

  • 1. Construction of carbon nanorods supported hydrothermal carbon and carbon fiber from waste biomass straw for high strength supercapacitor.
    Fang C; Hu P; Dong S; Cheng Y; Zhang D; Zhang X
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):552-560. PubMed ID: 32911404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances.
    Naderi L; Shahrokhian S
    J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen- and oxygen-doped carbon with abundant micropores derived from biomass waste for all-solid-state flexible supercapacitors.
    Lu S; Yang W; Zhou M; Qiu L; Tao B; Zhao Q; Wang X; Zhang L; Xie Q; Ruan Y
    J Colloid Interface Sci; 2022 Mar; 610():1088-1099. PubMed ID: 34876262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CoMnO
    Cho YH; Seong JG; Noh JH; Kim DY; Chung YS; Ko TH; Kim BS
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors.
    Chung HY; Pan GT; Hong ZY; Hsu CT; Chong S; Yang TC; Huang CM
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32899765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Templating Synthesis of 3D Hollow Tubular Porous Carbon Derived from Straw Cellulose Waste with Excellent Performance for Supercapacitors.
    Chen Z; Wang X; Xue B; Wei Q; Hu L; Wang Z; Yang X; Qiu J
    ChemSusChem; 2019 Apr; 12(7):1390-1400. PubMed ID: 30663234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-Doped Hierarchical Meso/Microporous Carbon from Bamboo Fungus for Symmetric Supercapacitor Applications.
    Zou Z; Lei Y; Li Y; Zhang Y; Xiao W
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-element co-doped biomass porous carbon with uniform cellular pores as a supercapacitor electrode material to realise high value-added utilisation of agricultural waste.
    Yue X; Yang H; An P; Gao Z; Li H; Ye F
    Dalton Trans; 2022 Aug; 51(32):12125-12136. PubMed ID: 35876119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Fe
    Yu P; Duan W; Jiang Y
    Front Chem; 2020; 8():611852. PubMed ID: 33324617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Utilization of Biomass Refinery Wastes for Accessing Activated Carbons and Supercapacitor Electrode Materials.
    Chernysheva DV; Chus YA; Klushin VA; Lastovina TA; Pudova LS; Smirnova NV; Kravchenko OA; Chernyshev VM; Ananikov VP
    ChemSusChem; 2018 Oct; 11(20):3599-3608. PubMed ID: 30168655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid single-step synthesis of porous carbon from an agricultural waste for energy storage application.
    Chen W; Wang X; Liu C; Luo M; Yang P; Zhou X
    Waste Manag; 2020 Feb; 102():330-339. PubMed ID: 31711027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Microwave Synthesis of Hierarchical Porous Carbons from Waste Palm Boosted by Activated Carbons for Supercapacitors.
    Liu C; Chen W; Hong S; Pan M; Jiang M; Wu Q; Mei C
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30861993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors.
    Tan Z; Yang J; Liang Y; Zheng M; Hu H; Dong H; Liu Y; Xiao Y
    J Colloid Interface Sci; 2021 Mar; 585():778-786. PubMed ID: 33143851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance asymmetric supercapacitor made of NiMoO
    Wang M; Zhang J; Yi X; Liu B; Zhao X; Liu X
    Beilstein J Nanotechnol; 2020; 11():240-251. PubMed ID: 32082963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationally tuning ratio of micro- to meso-pores of biomass-derived ultrathin carbon sheets toward supercapacitors with high energy and high power density.
    Zhang Y; Wu C; Dai S; Liu L; Zhang H; Shen W; Sun W; Ming Li C
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):817-825. PubMed ID: 34425269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance.
    Song M; Zhou Y; Ren X; Wan J; Du Y; Wu G; Ma F
    J Colloid Interface Sci; 2019 Feb; 535():276-286. PubMed ID: 30316114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on High-Value Utilization of Carbon Derived from Tobacco Waste in Supercapacitors.
    Huang Z; Qin C; Wang J; Cao L; Ma Z; Yuan Q; Lin Z; Zhang P
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors.
    Cao Q; Zhu M; Chen J; Song Y; Li Y; Zhou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1210-1221. PubMed ID: 31845573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays.
    Zhao G; Tang Y; Wan G; Xu X; Zhou X; Zhou M; Hao C; Deng S; Wang G
    J Colloid Interface Sci; 2020 Jul; 572():151-159. PubMed ID: 32240788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel biomass-derived smoke-like carbon as a supercapacitor electrode material.
    Chu M; Li M; Han Z; Cao J; Li R; Cheng Z
    R Soc Open Sci; 2019 Jul; 6(7):190132. PubMed ID: 31417718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.