These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 32911421)
1. Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport. Nielsen JE; Bjørnestad VA; Pipich V; Jenssen H; Lund R J Colloid Interface Sci; 2021 Jan; 582(Pt B):793-802. PubMed ID: 32911421 [TBL] [Abstract][Full Text] [Related]
2. Impact of antimicrobial peptides on Nielsen JE; Prévost SF; Jenssen H; Lund R Faraday Discuss; 2021 Dec; 232(0):203-217. PubMed ID: 34590103 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial Peptides Increase Line Tension in Raft-Forming Lipid Membranes. Koynarev VR; Borgos KKA; Kohlbrecher J; Porcar L; Nielsen JE; Lund R J Am Chem Soc; 2024 Jul; 146(30):20891-20903. PubMed ID: 39018511 [TBL] [Abstract][Full Text] [Related]
4. Resolving the structural interactions between antimicrobial peptides and lipid membranes using small-angle scattering methods: the case of indolicidin. Nielsen JE; Bjørnestad VA; Lund R Soft Matter; 2018 Nov; 14(43):8750-8763. PubMed ID: 30358793 [TBL] [Abstract][Full Text] [Related]
5. Accelerating Lipid Flip-Flop at Low Concentrations: A General Mechanism for Membrane Binding Peptides. Carrer M; Nielsen JE; Cezar HM; Lund R; Cascella M; Soares TA J Phys Chem Lett; 2023 Aug; 14(31):7014-7019. PubMed ID: 37523748 [TBL] [Abstract][Full Text] [Related]
6. How Cell-Penetrating Peptides Behave Differently from Pore-Forming Peptides: Structure and Stability of Induced Transmembrane Pores. Alimohamadi H; de Anda J; Lee MW; Schmidt NW; Mandal T; Wong GCL J Am Chem Soc; 2023 Dec; 145(48):26095-26105. PubMed ID: 37989570 [TBL] [Abstract][Full Text] [Related]
7. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. Perez-Salas U; Garg S; Gerelli Y; Porcar L Curr Top Membr; 2021; 88():359-412. PubMed ID: 34862031 [TBL] [Abstract][Full Text] [Related]
8. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review. Bertrand B; Garduño-Juárez R; Munoz-Garay C Biochim Biophys Acta Biomembr; 2021 Apr; 1863(4):183551. PubMed ID: 33465367 [TBL] [Abstract][Full Text] [Related]
9. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers. Swana KW; Nagarajan R; Camesano TA Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576869 [TBL] [Abstract][Full Text] [Related]
10. Effect of an Antimicrobial Peptide on Lateral Segregation of Lipids: A Structure and Dynamics Study by Neutron Scattering. Sharma VK; Qian S Langmuir; 2019 Mar; 35(11):4152-4160. PubMed ID: 30720281 [TBL] [Abstract][Full Text] [Related]
11. Molecular Transport and Growth of Lipid Vesicles Exposed to Antimicrobial Peptides. Nielsen JE; Lund R Langmuir; 2022 Jan; 38(1):374-384. PubMed ID: 34902242 [TBL] [Abstract][Full Text] [Related]
12. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies. Hasan M; Yamazaki M Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351 [TBL] [Abstract][Full Text] [Related]
13. A biophysical study of the interactions between the antimicrobial peptide indolicidin and lipid model systems. Nielsen JE; Lind TK; Lone A; Gerelli Y; Hansen PR; Jenssen H; Cárdenas M; Lund R Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1355-1364. PubMed ID: 30978313 [TBL] [Abstract][Full Text] [Related]
14. Structural characterization in mixed lipid membrane systems by neutron and X-ray scattering. Kiselev MA; Lombardo D Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3700-3717. PubMed ID: 27138452 [TBL] [Abstract][Full Text] [Related]
15. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related]
16. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901 [TBL] [Abstract][Full Text] [Related]
17. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
18. Peptide-induced asymmetric distribution of charged lipids in a vesicle bilayer revealed by small-angle neutron scattering. Qian S; Heller WT J Phys Chem B; 2011 Aug; 115(32):9831-7. PubMed ID: 21751797 [TBL] [Abstract][Full Text] [Related]
19. Structural elucidation upon binding of antimicrobial peptides into binary mixed lipid monolayers mimicking bacterial membranes. Ciumac D; Gong H; Campbell RA; Campana M; Xu H; Lu JR J Colloid Interface Sci; 2021 Sep; 598():193-205. PubMed ID: 33901846 [TBL] [Abstract][Full Text] [Related]
20. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]