These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32911439)

  • 1. Random model for radiation shielding calculation of particle reinforced metal matrix composites and its application.
    Sun W; Hu H; Yu B; Sheng L; Hu G; Cai Y; Yang Q; Zhang M; Yan Y
    Appl Radiat Isot; 2020 Dec; 166():109299. PubMed ID: 32911439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites.
    Sun W; Hu G; Xu H; Li Y; Wang C; Men T; Ji F; Lao W; Yu B; Sheng L; Li J; Jia Q; Xiong S; Hu H
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of ITO and ZnO ternary glassy composites in terms of radiation shielding properties by Monte Carlo N-particle transport code and BXCOM.
    Toker O; Bilmez B; Kavanoz HB; Akçalı Ö; İçelli O
    Radiat Environ Biophys; 2020 May; 59(2):283-293. PubMed ID: 32193598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on a High-Boron-Content Stainless Steel Composite for Nuclear Radiation.
    Sun WQ; Hu G; Yu XH; Shi J; Xu H; Wu RJ; He C; Yi Q; Hu HS
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of deterministic and Monte Carlo methods in shielding design.
    Oliveira AD; Oliveira C
    Radiat Prot Dosimetry; 2005; 115(1-4):254-7. PubMed ID: 16381723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of New Lead-Free Composite Materials as Potential Radiation Shields.
    Almurayshid M; Alssalim Y; Aksouh F; Almsalam R; ALQahtani M; Sayyed MI; Almasoud F
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo calculation of epithermal neutron resonance self-shielding factors in foils of different materials.
    Gonçalves IF; Martinho E; Salgado J
    Appl Radiat Isot; 2002 Jun; 56(6):945-51. PubMed ID: 12102355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of two multi-objective optimization methods for composite radiation shielding materials.
    Cai Y; Hao R; Yu S; Wang C; Hu G
    Appl Radiat Isot; 2020 May; 159():109061. PubMed ID: 32068147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direction modulated brachytherapy (DMBT) tandem applicator for cervical cancer treatment: Choosing the optimal shielding material.
    Safigholi H; Han DY; Soliman A; Song WY
    Med Phys; 2018 Jun; ():. PubMed ID: 29858499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile program for the calculation of linear accelerator room shielding.
    Hassan ZE; Farag NM; Elshemey WM
    J Radiol Prot; 2018 Jun; 38(2):666-677. PubMed ID: 29565027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms.
    Facure A; da Silva AX; da Rosa LA; Cardoso SC; Rezende GF
    Med Phys; 2008 Jul; 35(7):3285-92. PubMed ID: 18697553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs.
    Ballarini F; Biaggi M; De Biaggi L; Ferrari A; Ottolenghi A; Panzarasa A; Paretzke HG; Pelliccioni M; Sala P; Scannicchio D; Zankl M
    Adv Space Res; 2004; 34(6):1338-46. PubMed ID: 15881774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shielding analysis of the Microtron MT-25 bunker using the MCNP-4C code and NCRP Report 51.
    Casanova AO; López N; Gelen A; Guevara MV; Díaz O; Cimino L; D'Alessandro K; Melo JC
    Radiat Prot Dosimetry; 2004; 109(3):189-95. PubMed ID: 15254322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive Computational Model for Damage Behavior of Metal-Matrix Composites Emphasizing the Effect of Particle Size and Volume Fraction.
    Gad SI; Attia MA; Hassan MA; El-Shafei AG
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal shielding thickness for galactic cosmic ray environments.
    Slaba TC; Bahadori AA; Reddell BD; Singleterry RC; Clowdsley MS; Blattnig SR
    Life Sci Space Res (Amst); 2017 Feb; 12():1-15. PubMed ID: 28212703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Design, Preparation, and Performance Evaluation of Heat-Resistant Interlayer-Polyimide-Resin-Based Neutron-Shielding Materials.
    Xu H; Liu D; Sun WQ; Wu RJ; Liao W; Li XL; Hu G; Hu HS
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo calculation of epithermal neutron resonance self-shielding factors in wires of different materials.
    Gonçalves IF; Martinho E; Salgado J
    Appl Radiat Isot; 2001 Oct; 55(4):447-51. PubMed ID: 11545495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the neutron beam line shield design for JSNS.
    Kawai M; Saito K; Sanami T; Nakao N; Maekawa F
    Radiat Prot Dosimetry; 2005; 115(1-4):580-6. PubMed ID: 16381789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of source biasing method for its use in CSNS beamline shielding calculation.
    Liang TR; Shen F; Liang TJ; Yin W; Yu QZ; Yu CX
    Radiat Prot Dosimetry; 2014 Dec; 162(3):208-14. PubMed ID: 24375377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation shielding analysis of a special linear accelerator for electron beam and X-ray.
    Kang WG; Pyo SH; Alkhuraiji TS; Han BS; Kang CM
    J Xray Sci Technol; 2017; 25(3):505-514. PubMed ID: 28157115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.