These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32911728)

  • 1. Molecular Engineering Enhances the Charge Carriers Transport in Wide Band-Gap Polymer Donors Based Polymer Solar Cells.
    Liu S; Yi S; Qing P; Li W; Gu B; He Z; Zhang B
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Effects of Selenophene and Extended Ladder-Type Donor Units for Efficient Polymer Solar Cells.
    Wang HC; Li QY; Yin HB; Ren X; Yao K; Zheng Y; Xu YX
    Macromol Rapid Commun; 2018 Jan; 39(2):. PubMed ID: 29215760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide Band Gap Polymer Based on Indacenodithiophene and Acenaphthoquinoxaline for Efficient Polymer Solar Cells Application.
    Liu M; Liu Z; Zhang Y; Zhao L
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusing Benzo[c][1,2,5]oxadiazole Unit with Thiophene for Constructing Wide-bandgap High-performance IDT-based Polymer Solar Cell Donor Material.
    Song X; Fan M; Zhang K; Ding D; Chen W; Li Y; Yu L; Sun M; Yang R
    Macromol Rapid Commun; 2018 Apr; 39(8):e1700782. PubMed ID: 29436043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dithieno[3,2-
    Gao W; Liu T; Hao M; Wu K; Zhang C; Sun Y; Yang C
    Chem Sci; 2016 Sep; 7(9):6167-6175. PubMed ID: 30034756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a novel low-bandgap polymer based on a ladder-type Heptacyclic arene consisting of outer thieno[3,2-b]thiophene units for efficient photovoltaic application.
    Xu X; Cai P; Lu Y; Choon NS; Chen J; Ong BS; Hu X
    Macromol Rapid Commun; 2013 Apr; 34(8):681-8. PubMed ID: 23495095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone Effects on the Thermoelectric Properties of Ultra-Small Bandgap Conjugated Polymers.
    Xie D; Xiao J; Li Q; Liu T; Xu J; Shao G
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt.
    Yin Z; Zheng Q; Chen SC; Cai D
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9015-25. PubMed ID: 23984993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar conjugated polymers containing 9,10-disubstituted phenanthrene units for efficient polymer solar cells.
    Li G; Kang C; Li C; Lu Z; Zhang J; Gong X; Zhao G; Dong H; Hu W; Bo Z
    Macromol Rapid Commun; 2014 Jun; 35(12):1142-7. PubMed ID: 24700381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady Enhancement in Photovoltaic Properties of Fluorine Functionalized Quinoxaline-Based Narrow Bandgap Polymer.
    Wu Z; Jiang H; Wang X; Yan L; Zeng W; Wu XG; Zhuang H; Zhu W; Yang R
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30586897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Alkyl-3,5-difluorophenyl-Substituted Benzodithiophene-Based Wide Band Gap Polymers for High-Efficiency Polymer Solar Cells.
    Li G; Gong X; Zhang J; Liu Y; Feng S; Li C; Bo Z
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3686-92. PubMed ID: 26646056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-
    An L; Tong J; Huang Y; Liang Z; Li J; Yang C; Wang X
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32046028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-bandgap donor polymers based on a dicyanodivinyl indacenodithiophene unit for non-fullerene polymer solar cells.
    He B; Chen Y; Chen J; Chen S; Xiao M; Chen G; Dai C
    RSC Adv; 2021 Jun; 11(35):21397-21404. PubMed ID: 35478821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells.
    Wang L; Liu H; Huai Z; Yang S
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28828-28837. PubMed ID: 28792202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indacenodithieno[3,2-
    Li F; Tang A; Zhang B; Zhou E
    ACS Macro Lett; 2019 Dec; 8(12):1599-1604. PubMed ID: 35619396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages.
    Yi S; Deng W; Sun S; Lan L; He Z; Yang W; Zhang B
    Polymers (Basel); 2018 Jan; 10(1):. PubMed ID: 30966088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells.
    Xu YX; Chueh CC; Yip HL; Ding FZ; Li YX; Li CZ; Li X; Chen WC; Jen AK
    Adv Mater; 2012 Dec; 24(47):6356-61. PubMed ID: 23001969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the open-circuit voltage in high-performance organic photovoltaic devices through conformational twisting of an indacenodithiophene-based conjugated polymer.
    Chen CP; Hsu HL
    Macromol Rapid Commun; 2013 Oct; 34(20):1623-8. PubMed ID: 24038305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diketopyrrolopyrrole Polymers for Organic Solar Cells.
    Li W; Hendriks KH; Wienk MM; Janssen RA
    Acc Chem Res; 2016 Jan; 49(1):78-85. PubMed ID: 26693798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.