These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 32912215)

  • 61. User satisfaction with lower limb wearable robotic exoskeletons.
    Poritz JMP; Taylor HB; Francisco G; Chang SH
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):322-327. PubMed ID: 30786789
    [No Abstract]   [Full Text] [Related]  

  • 62. Executive dysfunction post-stroke: an insight into the perspectives of physiotherapists.
    Hayes S; Donnellan C; Stokes E
    Disabil Rehabil; 2015; 37(20):1817-24. PubMed ID: 25374045
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Usability and acceptability by a younger and older user group regarding a mobile robot-supported gait rehabilitation system.
    Eicher C; Haesner M; Spranger M; Kuzmicheva O; Gräser A; Steinhagen-Thiessen E
    Assist Technol; 2019; 31(1):25-33. PubMed ID: 28700324
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation.
    Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ
    J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of the Synchronization-Based Control of a Wearable Robot Having a Non-Exoskeletal Structure on the Hemiplegic Gait of Stroke Patients.
    Mizukami N; Takeuchi S; Tetsuya M; Tsukahara A; Yoshida K; Matsushima A; Maruyama Y; Tako K; Hashimoto M
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1011-1016. PubMed ID: 29752236
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Appraisals of robotic locomotor exoskeletons for gait: focus group insights from potential users with spinal cord injuries.
    Heinemann AW; Kinnett-Hopkins D; Mummidisetty CK; Bond RA; Ehrlich-Jones L; Furbish C; Field-Fote E; Jayaraman A
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):762-772. PubMed ID: 32255369
    [No Abstract]   [Full Text] [Related]  

  • 68. Autonomous hip exoskeleton saves metabolic cost of walking uphill.
    Seo K; Lee J; Park YJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof.
    Murray SA; Ha KH; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4083-6. PubMed ID: 25570889
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Implementation of a gait center training to improve walking ability and vital parameters in inpatient neurological rehabilitation- a cohort study.
    Reichl S; Weilbach F; Mehrholz J
    J Neuroeng Rehabil; 2020 Mar; 17(1):38. PubMed ID: 32131857
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A follow-up study of the effect of training using the Hybrid Assistive Limb on Gait ability in chronic stroke patients.
    Tanaka H; Nankaku M; Nishikawa T; Yonezawa H; Mori H; Kikuchi T; Nishi H; Takagi Y; Miyamoto S; Ikeguchi R; Matsuda S
    Top Stroke Rehabil; 2019 Oct; 26(7):491-496. PubMed ID: 31318323
    [No Abstract]   [Full Text] [Related]  

  • 73. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity.
    Lee DJ; Bae SJ; Jang SH; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients.
    Schließmann D; Nisser M; Schuld C; Gladow T; Derlien S; Heutehaus L; Weidner N; Smolenski U; Rupp R
    J Neuroeng Rehabil; 2018 May; 15(1):44. PubMed ID: 29843763
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016.
    Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O
    J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control.
    Yoshimoto T; Shimizu I; Hiroi Y; Kawaki M; Sato D; Nagasawa M
    Int J Rehabil Res; 2015 Dec; 38(4):338-43. PubMed ID: 26288120
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects.
    Alingh JF; Weerdesteyn V; Nienhuis B; van Asseldonk EHF; Geurts ACH; Groen BE
    J Neuroeng Rehabil; 2019 Mar; 16(1):40. PubMed ID: 30876445
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Every person is an individual: physical therapist clinical reasoning used in inpatient rehabilitation for walking assistive device prescription in patients with stroke and brain injury.
    O'Brien SR; Durr K; Laubisch E; Losi L; Parrillo V; Pericozzi S; Poirier B; Poirier L; Ray K; Sackett A; Simoneau D
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):1-8. PubMed ID: 31429328
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A narrative review of gait training after stroke and a proposal for developing a novel gait training device that provides minimal assistance.
    Liu W
    Top Stroke Rehabil; 2018 Jul; 25(5):375-383. PubMed ID: 29718796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.