BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32912472)

  • 21. The impact of epicardial fat volume on coronary plaque vulnerability: insight from optical coherence tomography analysis.
    Ito T; Nasu K; Terashima M; Ehara M; Kinoshita Y; Ito T; Kimura M; Tanaka N; Habara M; Tsuchikane E; Suzuki T
    Eur Heart J Cardiovasc Imaging; 2012 May; 13(5):408-15. PubMed ID: 22294682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency and spatial distribution of thin-cap fibroatheroma assessed by 3-vessel intravascular ultrasound and optical coherence tomography: an ex vivo validation and an initial in vivo feasibility study.
    Kume T; Okura H; Yamada R; Kawamoto T; Watanabe N; Neishi Y; Sadahira Y; Akasaka T; Yoshida K
    Circ J; 2009 Jun; 73(6):1086-91. PubMed ID: 19359816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Association between Gamma-Glutamyl Transferase and Coronary Atherosclerotic Plaque Vulnerability: An Optical Coherence Tomography Study.
    Wang J; Li X; Pu J; Jin S; Jia L; Li X; Liu F; Shan C; Yang Y
    Biomed Res Int; 2019; 2019():9602783. PubMed ID: 30984786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipoprotein (a) is related to coronary atherosclerotic burden and a vulnerable plaque phenotype in angiographically obstructive coronary artery disease.
    Niccoli G; Cin D; Scalone G; Panebianco M; Abbolito S; Cosentino N; Jacoangeli F; Refaat H; Gallo G; Salerno G; Volpe M; Crea F; De Biase L
    Atherosclerosis; 2016 Mar; 246():214-20. PubMed ID: 26803430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of coronary thin-cap fibroatheroma by intravascular ultrasound-based machine learning.
    Bae Y; Kang SJ; Kim G; Lee JG; Min HS; Cho H; Kang DY; Lee PH; Ahn JM; Park DW; Lee SW; Kim YH; Lee CW; Park SW; Park SJ
    Atherosclerosis; 2019 Sep; 288():168-174. PubMed ID: 31130215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography.
    Kashiwagi M; Tanaka A; Kitabata H; Tsujioka H; Kataiwa H; Komukai K; Tanimoto T; Takemoto K; Takarada S; Kubo T; Hirata K; Nakamura N; Mizukoshi M; Imanishi T; Akasaka T
    JACC Cardiovasc Imaging; 2009 Dec; 2(12):1412-9. PubMed ID: 20083077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study.
    Kato K; Yonetsu T; Kim SJ; Xing L; Lee H; McNulty I; Yeh RW; Sakhuja R; Zhang S; Uemura S; Yu B; Mizuno K; Jang IK
    Circ Cardiovasc Imaging; 2012 Jul; 5(4):433-40. PubMed ID: 22679059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of CD14
    Yamamoto H; Yoshida N; Shinke T; Otake H; Kuroda M; Sakaguchi K; Hirota Y; Toba T; Takahashi H; Terashita D; Uzu K; Tahara N; Shinkura Y; Kuroda K; Nagasawa Y; Nagano Y; Tsukiyama Y; Yanaka KI; Emoto T; Sasaki N; Yamashita T; Ogawa W; Hirata KI
    Atherosclerosis; 2018 Feb; 269():245-251. PubMed ID: 29407600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A three-vessel virtual histology intravascular ultrasound analysis of frequency and distribution of thin-cap fibroatheromas in patients with acute coronary syndrome or stable angina pectoris.
    Hong MK; Mintz GS; Lee CW; Lee JW; Park JH; Park DW; Lee SW; Kim YH; Cheong SS; Kim JJ; Park SW; Park SJ
    Am J Cardiol; 2008 Mar; 101(5):568-72. PubMed ID: 18308000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predictors of Rapid Plaque Progression: An Optical Coherence Tomography Study.
    Araki M; Yonetsu T; Kurihara O; Nakajima A; Lee H; Soeda T; Minami Y; McNulty I; Uemura S; Kakuta T; Jang IK
    JACC Cardiovasc Imaging; 2021 Aug; 14(8):1628-1638. PubMed ID: 33011121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma.
    Brown AJ; Obaid DR; Costopoulos C; Parker RA; Calvert PA; Teng Z; Hoole SP; West NE; Goddard M; Bennett MR
    Circ Cardiovasc Imaging; 2015 Oct; 8(10):e003487. PubMed ID: 26429760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of computed tomography angiography to identify thin-cap fibroatheroma detected by optical coherence tomography.
    Tomizawa N; Yamamoto K; Inoh S; Nojo T; Nakamura S
    J Cardiovasc Comput Tomogr; 2017; 11(2):129-134. PubMed ID: 28214139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasma Pentraxin3 Level Is Associated With Plaque Vulnerability Assessed by Optical Coherence Tomography in Patients With Coronary Artery Disease.
    Tazaki R; Tanigawa J; Fujisaka T; Shibata K; Takeda Y; Ishihara T; Hoshiga M; Hanafusa T; Ishizaka N
    Int Heart J; 2016; 57(1):18-24. PubMed ID: 26673442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low Plasma Adiponectin Levels Are Associated With Vulnerable Plaque Features in Patients With Acute Coronary Syndrome: An Optical Coherence Tomography Study.
    Refaat H; Tantawy A
    Cardiovasc Revasc Med; 2021 Apr; 25():63-71. PubMed ID: 33097459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study.
    Vergallo R; Papafaklis MI; Yonetsu T; Bourantas CV; Andreou I; Wang Z; Fujimoto JG; McNulty I; Lee H; Biasucci LM; Crea F; Feldman CL; Michalis LK; Stone PH; Jang IK
    Circ Cardiovasc Imaging; 2014 Nov; 7(6):905-11. PubMed ID: 25190591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circulating malondialdehyde-modified low-density lipoprotein levels are associated with the presence of thin-cap fibroatheromas determined by optical coherence tomography in coronary artery disease.
    Matsuo Y; Kubo T; Okumoto Y; Ishibashi K; Komukai K; Tanimoto T; Ino Y; Kitabata H; Hirata K; Imanishi T; Akagi H; Akasaka T
    Eur Heart J Cardiovasc Imaging; 2013 Jan; 14(1):43-50. PubMed ID: 22573905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into the spatial distribution of lipid-rich plaques in relation to coronary artery bifurcations: an in-vivo optical coherence tomography study.
    Jia H; Hu S; Uemura S; Park SJ; Jang Y; Prasad A; Lee S; Soeda T; Abtahian F; Vergallo R; Tian J; Lee H; Stone PH; Yu B; Jang IK
    Coron Artery Dis; 2015 Mar; 26(2):133-41. PubMed ID: 25356817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical coherence tomography features of angiographic complex and smooth lesions in acute coronary syndromes.
    Refaat H; Niccoli G; Gramegna M; Montone RA; Burzotta F; Leone AM; Trani C; Ammar AS; Elsherbiny IA; Scalone G; Prati F; Crea F
    Int J Cardiovasc Imaging; 2015 Jun; 31(5):927-34. PubMed ID: 25724566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association of Platelet to lymphocyte ratio with non-culprit atherosclerotic plaque vulnerability in patients with acute coronary syndrome: an optical coherence tomography study.
    Wang X; Xie Z; Liu X; Huang X; Lin J; Huang D; Yu B; Hou J
    BMC Cardiovasc Disord; 2017 Jul; 17(1):175. PubMed ID: 28673240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical coherence tomography-defined plaque vulnerability in relation to functional stenosis severity stratified by fractional flow reserve and quantitative flow ratio.
    Kanno Y; Sugiyama T; Hoshino M; Usui E; Hamaya R; Kanaji Y; Murai T; Lee T; Yonetsu T; Kakuta T
    Catheter Cardiovasc Interv; 2020 Sep; 96(3):E238-E247. PubMed ID: 32012438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.