These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32912493)
41. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Murcia G; Pontin M; Reinoso H; Baraldi R; Bertazza G; Gómez-Talquenca S; Bottini R; Piccoli PN Physiol Plant; 2016 Mar; 156(3):323-37. PubMed ID: 26411544 [TBL] [Abstract][Full Text] [Related]
42. Higher growth of the apple (Malus × domestica Borkh.) fruit cortex is supported by resource intensive metabolism during early development. Jing S; Malladi A BMC Plant Biol; 2020 Feb; 20(1):75. PubMed ID: 32054442 [TBL] [Abstract][Full Text] [Related]
43. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Ireland HS; Yao JL; Tomes S; Sutherland PW; Nieuwenhuizen N; Gunaseelan K; Winz RA; David KM; Schaffer RJ Plant J; 2013 Mar; 73(6):1044-56. PubMed ID: 23236986 [TBL] [Abstract][Full Text] [Related]
44. UV-C treatment promotes quality of early ripening apple fruit by regulating malate metabolizing genes during postharvest storage. Onik JC; Xie Y; Duan Y; Hu X; Wang Z; Lin Q PLoS One; 2019; 14(4):e0215472. PubMed ID: 30990828 [TBL] [Abstract][Full Text] [Related]
45. Microarray analysis of apple gene expression engaged in early fruit development. Lee YP; Yu GH; Seo YS; Han SE; Choi YO; Kim D; Mok IG; Kim WT; Sung SK Plant Cell Rep; 2007 Jul; 26(7):917-26. PubMed ID: 17294193 [TBL] [Abstract][Full Text] [Related]
46. [Effects of environmental factors at different altitudes on leaves and fruit quality of Fuji apple]. Luo WW; Gao CX; Zhang D; Han MY; Zhao CP; Liu HK Ying Yong Sheng Tai Xue Bao; 2014 Aug; 25(8):2243-50. PubMed ID: 25509074 [TBL] [Abstract][Full Text] [Related]
47. 13C labelling reveals different contributions of photoassimilates from infructescences for fruiting in two temperate forest tree species. Hoch G; Keel SG Plant Biol (Stuttg); 2006 Sep; 8(5):606-14. PubMed ID: 16883486 [TBL] [Abstract][Full Text] [Related]
48. Carbon autonomy of peach shoots determined by (13)C-photoassimilate transport. Volpe G; Lo Bianco R; Rieger M Tree Physiol; 2008 Dec; 28(12):1805-12. PubMed ID: 19193563 [TBL] [Abstract][Full Text] [Related]
49. Different flowering response to various fruit loads in apple cultivars correlates with degree of transcript reaccumulation of a TFL1-encoding gene. Haberman A; Ackerman M; Crane O; Kelner JJ; Costes E; Samach A Plant J; 2016 Jul; 87(2):161-73. PubMed ID: 27121325 [TBL] [Abstract][Full Text] [Related]
50. Identification of TPS family members in apple (Malus x domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Du L; Qi S; Ma J; Xing L; Fan S; Zhang S; Li Y; Shen Y; Zhang D; Han M Plant Physiol Biochem; 2017 Nov; 120():10-23. PubMed ID: 28964942 [TBL] [Abstract][Full Text] [Related]
51. Growth and carbon balance are differently regulated by tree and shoot fruiting contexts: an integrative study on apple genotypes with contrasted bearing patterns. Pallas B; Bluy S; Ngao J; Martinez S; Clément-Vidal A; Kelner JJ; Costes E Tree Physiol; 2018 Sep; 38(9):1395-1408. PubMed ID: 29325154 [TBL] [Abstract][Full Text] [Related]
52. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed. Wang XL; Hu ZY; You CX; Kong XZ; Shi XP Plant Sci; 2013 Sep; 210():36-45. PubMed ID: 23849111 [TBL] [Abstract][Full Text] [Related]
53. [Effects of different pruning modes on the light distribution characters and fruit yield and quality in densely planted 'Red Fuji' apple orchard]. Song K; Wei QP; Yue YL; Wang XW; Zhang JX Ying Yong Sheng Tai Xue Bao; 2010 May; 21(5):1224-30. PubMed ID: 20707105 [TBL] [Abstract][Full Text] [Related]
54. Sugar and phenol content in apple with or without watercore. Zupan A; Mikulic-Petkovsek M; Stampar F; Veberic R J Sci Food Agric; 2016 Jun; 96(8):2845-50. PubMed ID: 26346698 [TBL] [Abstract][Full Text] [Related]
55. [Effects of Na Wang F; Yue YJ; Li M; Luo JK; Ge SF; Jiang YM Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):182-188. PubMed ID: 31957395 [TBL] [Abstract][Full Text] [Related]
56. DIRECT ASSIMILATION OF ATMOSPHERIC CARBON BY IMMATURE APPLE FRUITS. Imada S; Tako Y; Moriya Y Radiat Prot Dosimetry; 2022 Sep; 198(13-15):1004-1008. PubMed ID: 36083727 [TBL] [Abstract][Full Text] [Related]
57. Difference in calcium accumulation in the fruit of two apple varieties and its relationship with vascular bundle development in the pedicel. Jing J; Xu X; Fu W; Zhang H; Qu S; Wang S Plant Physiol Biochem; 2023 Aug; 201():107833. PubMed ID: 37369165 [TBL] [Abstract][Full Text] [Related]
58. Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth. Dong S; Scagel CF; Cheng L; Fuchigami LH; Rygiewicz PT Tree Physiol; 2001 May; 21(8):541-7. PubMed ID: 11359712 [TBL] [Abstract][Full Text] [Related]
59. Identification of sorbitol transporters expressed in the phloem of apple source leaves. Watari J; Kobae Y; Yamaki S; Yamada K; Toyofuku K; Tabuchi T; Shiratake K Plant Cell Physiol; 2004 Aug; 45(8):1032-41. PubMed ID: 15356329 [TBL] [Abstract][Full Text] [Related]
60. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees. Greer DH; Wünsche JN; Norling CL; Wiggins HN Tree Physiol; 2006 Jan; 26(1):105-11. PubMed ID: 16203720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]