These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 32912679)
1. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Pattharaprachayakul N; Lee M; Incharoensakdi A; Woo HM Enzyme Microb Technol; 2020 Oct; 140():109619. PubMed ID: 32912679 [TBL] [Abstract][Full Text] [Related]
2. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes. Naduthodi MIS; Barbosa MJ; van der Oost J Biotechnol J; 2018 Sep; 13(9):e1700591. PubMed ID: 29396999 [TBL] [Abstract][Full Text] [Related]
4. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a. Shin HR; Kweon J; Kim Y Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383 [TBL] [Abstract][Full Text] [Related]
5. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a. Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448 [TBL] [Abstract][Full Text] [Related]
8. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Xu X; Chemparathy A; Zeng L; Kempton HR; Shang S; Nakamura M; Qi LS Mol Cell; 2021 Oct; 81(20):4333-4345.e4. PubMed ID: 34480847 [TBL] [Abstract][Full Text] [Related]
9. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. Yadav I; Rautela A; Kumar S World J Microbiol Biotechnol; 2021 Oct; 37(12):201. PubMed ID: 34664124 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering tools in model cyanobacteria. Carroll AL; Case AE; Zhang A; Atsumi S Metab Eng; 2018 Nov; 50():47-56. PubMed ID: 29588234 [TBL] [Abstract][Full Text] [Related]
11. Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Swartjes T; Staals RHJ; van der Oost J Biochem Soc Trans; 2020 Feb; 48(1):207-219. PubMed ID: 31872209 [TBL] [Abstract][Full Text] [Related]
12. CRISPRi-dCas12a: A dCas12a-Mediated CRISPR Interference for Repression of Multiple Genes and Metabolic Engineering in Cyanobacteria. Choi SY; Woo HM ACS Synth Biol; 2020 Sep; 9(9):2351-2361. PubMed ID: 32379967 [TBL] [Abstract][Full Text] [Related]
13. Application of different types of CRISPR/Cas-based systems in bacteria. Liu Z; Dong H; Cui Y; Cong L; Zhang D Microb Cell Fact; 2020 Sep; 19(1):172. PubMed ID: 32883277 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320 [TBL] [Abstract][Full Text] [Related]
15. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. Pyzocha NK; Chen S ACS Chem Biol; 2018 Feb; 13(2):347-356. PubMed ID: 29121460 [TBL] [Abstract][Full Text] [Related]
16. Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems. Briner AE; Barrangou R Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371605 [TBL] [Abstract][Full Text] [Related]