These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32912932)

  • 1. Genetic and Physical Localization of the Gene Controlling Leaf Pigmentation Pattern in
    Yu X; Qin Q; Wu X; Li D; Yang S
    G3 (Bethesda); 2020 Nov; 10(11):4159-4165. PubMed ID: 32912932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves.
    Carletti G; Lucini L; Busconi M; Marocco A; Bernardi J
    Plant Physiol Biochem; 2013 Sep; 70():123-32. PubMed ID: 23774374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The antagonistic MYB paralogs RH1 and RH2 govern anthocyanin leaf markings in Medicago truncatula.
    Wang C; Ji W; Liu Y; Zhou P; Meng Y; Zhang P; Wen J; Mysore KS; Zhai J; Young ND; Tian Z; Niu L; Lin H
    New Phytol; 2021 Mar; 229(6):3330-3344. PubMed ID: 33222243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.
    Jun JH; Liu C; Xiao X; Dixon RA
    Plant Cell; 2015 Oct; 27(10):2860-79. PubMed ID: 26410301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MYB Activator WHITE PETAL1 Associates with MtTT8 and MtWD40-1 to Regulate Carotenoid-Derived Flower Pigmentation in
    Meng Y; Wang Z; Wang Y; Wang C; Zhu B; Liu H; Ji W; Wen J; Chu C; Tadege M; Niu L; Lin H
    Plant Cell; 2019 Nov; 31(11):2751-2767. PubMed ID: 31530734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago.
    Peel GJ; Pang Y; Modolo LV; Dixon RA
    Plant J; 2009 Jul; 59(1):136-49. PubMed ID: 19368693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.
    Li P; Chen B; Zhang G; Chen L; Dong Q; Wen J; Mysore KS; Zhao J
    New Phytol; 2016 May; 210(3):905-21. PubMed ID: 26725247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic localization of the SPC gene controlling pod coiling direction in Medicago truncatula.
    Yu X; Qin Q; Wu X; Li D; Yang S
    Genes Genomics; 2020 Jul; 42(7):735-742. PubMed ID: 32449065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MtGSTF7, a TT19-like GST gene, is essential for accumulation of anthocyanins, but not proanthocyanins in Medicago truncatula.
    Wang R; Lu N; Liu C; Dixon RA; Wu Q; Mao Y; Yang Y; Zheng X; He L; Zhao B; Zhang F; Yang S; Chen H; Jun JH; Li Y; Liu C; Liu Y; Chen J
    J Exp Bot; 2022 Jun; 73(12):4129-4146. PubMed ID: 35294003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development.
    Pang Y; Wenger JP; Saathoff K; Peel GJ; Wen J; Huhman D; Allen SN; Tang Y; Cheng X; Tadege M; Ratet P; Mysore KS; Sumner LW; Marks MD; Dixon RA
    Plant Physiol; 2009 Nov; 151(3):1114-29. PubMed ID: 19710231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A newly characterized allele of ZmR1 increases anthocyanin content in whole maize plant and the regulation mechanism of different ZmR1 alleles.
    Luo M; Lu B; Shi Y; Zhao Y; Wei Z; Zhang C; Wang Y; Liu H; Shi Y; Yang J; Song W; Lu X; Fan Y; Xu L; Wang R; Zhao J
    Theor Appl Genet; 2022 Sep; 135(9):3039-3055. PubMed ID: 35788748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation.
    Jin SW; Rahim MA; Afrin KS; Park JI; Kang JG; Nou IS
    BMC Genomics; 2018 Nov; 19(1):797. PubMed ID: 30400854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of a R2R3-MYB transcription factor gene related to anthocyanin biosynthesis in the spathes of Anthurium andraeanum (Hort.).
    Li C; Qiu J; Yang G; Huang S; Yin J
    Plant Cell Rep; 2016 Oct; 35(10):2151-65. PubMed ID: 27424029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium.
    Albert NW; Griffiths AG; Cousins GR; Verry IM; Williams WM
    New Phytol; 2015 Jan; 205(2):882-93. PubMed ID: 25329638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula.
    Zhao J; Huhman D; Shadle G; He XZ; Sumner LW; Tang Y; Dixon RA
    Plant Cell; 2011 Apr; 23(4):1536-55. PubMed ID: 21467581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated metabolomics identifies CYP72A67 and CYP72A68 oxidases in the biosynthesis of Medicago truncatula oleanate sapogenins.
    Tzin V; Snyder JH; Yang DS; Huhman DV; Watson BS; Allen SN; Tang Y; Miettinen K; Arendt P; Pollier J; Goossens A; Sumner LW
    Metabolomics; 2019 May; 15(6):85. PubMed ID: 31144047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula.
    Xie DY; Jackson LA; Cooper JD; Ferreira D; Paiva NL
    Plant Physiol; 2004 Mar; 134(3):979-94. PubMed ID: 14976232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The geometry of the compound leaf plays a significant role in the leaf movement of Medicago truncatula modulated by mtdwarf4a.
    Zhao W; Bai Q; Zhao B; Wu Q; Wang C; Liu Y; Yang T; Liu Y; He H; Du S; Tadege M; He L; Chen J
    New Phytol; 2021 Apr; 230(2):475-484. PubMed ID: 33458826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.
    Li H; Zhu L; Yuan G; Heng S; Yi B; Ma C; Shen J; Tu J; Fu T; Wen J
    Mol Genet Genomics; 2016 Aug; 291(4):1523-34. PubMed ID: 27003438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula.
    Niu L; Lin H; Zhang F; Watira TW; Li G; Tang Y; Wen J; Ratet P; Mysore KS; Tadege M
    Plant J; 2015 Feb; 81(3):480-92. PubMed ID: 25492397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.