These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32912932)

  • 21. Purple-grained barley (Hordeum vulgare L.): marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network.
    Gordeeva EI; Glagoleva AY; Kukoeva TV; Khlestkina EK; Shoeva OY
    BMC Plant Biol; 2019 Feb; 19(Suppl 1):52. PubMed ID: 30813902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula.
    Niu L; Lin H; Zhang F; Watira TW; Li G; Tang Y; Wen J; Ratet P; Mysore KS; Tadege M
    Plant J; 2015 Feb; 81(3):480-92. PubMed ID: 25492397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula.
    Verdier J; Zhao J; Torres-Jerez I; Ge S; Liu C; He X; Mysore KS; Dixon RA; Udvardi MK
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1766-71. PubMed ID: 22307644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation.
    Cavagnaro PF; Iorizzo M; Yildiz M; Senalik D; Parsons J; Ellison S; Simon PW
    BMC Genomics; 2014 Dec; 15(1):1118. PubMed ID: 25514876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaf layer-based transcriptome profiling for discovery of epidermal-selective promoters in Medicago truncatula.
    Cui X; Jun JH; Rao X; Bahr C; Chapman E; Temple S; Dixon RA
    Planta; 2022 Jul; 256(2):31. PubMed ID: 35790623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots.
    Pollier J; De Geyter N; Moses T; Boachon B; Franco-Zorrilla JM; Bai Y; Lacchini E; Gholami A; Vanden Bossche R; Werck-Reichhart D; Goormachtig S; Goossens A
    Plant J; 2019 Aug; 99(4):637-654. PubMed ID: 31009122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa).
    Zhang JY; Broeckling CD; Blancaflor EB; Sledge MK; Sumner LW; Wang ZY
    Plant J; 2005 Jun; 42(5):689-707. PubMed ID: 15918883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A high-density genetic map developed by specific-locus amplified fragment (SLAF) sequencing and identification of a locus controlling anthocyanin pigmentation in stalk of Zicaitai (Brassica rapa L. ssp. chinensis var. purpurea).
    Li GH; Chen HC; Liu JL; Luo WL; Xie DS; Luo SB; Wu TQ; Akram W; Zhong YJ
    BMC Genomics; 2019 May; 20(1):343. PubMed ID: 31064320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SMALL LEAF AND BUSHY1 controls organ size and lateral branching by modulating the stability of BIG SEEDS1 in Medicago truncatula.
    Yin P; Ma Q; Wang H; Feng D; Wang X; Pei Y; Wen J; Tadege M; Niu L; Lin H
    New Phytol; 2020 Jun; 226(5):1399-1412. PubMed ID: 31981419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lateral Leaflet Suppression 1 (LLS1), encoding the MtYUCCA1 protein, regulates lateral leaflet development in Medicago truncatula.
    Zhao B; He L; Jiang C; Liu Y; He H; Bai Q; Zhou S; Zheng X; Wen J; Mysore KS; Tadege M; Liu Y; Liu R; Chen J
    New Phytol; 2020 Jul; 227(2):613-628. PubMed ID: 32170762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated transcriptional and metabolomics signature pattern of pigmented wheat to insight the seed pigmentation and other associated features.
    Sharma S; Kumar A; Singh D; Kumari A; Kapoor P; Kaur S; Shreon B; Garg M
    Plant Physiol Biochem; 2022 Oct; 189():59-70. PubMed ID: 36055054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa.
    Du J; Lu S; Chai M; Zhou C; Sun L; Tang Y; Nakashima J; Kolape J; Wen Z; Behzadirad M; Zhong T; Sun J; Zhang Y; Wang ZY
    Plant Biotechnol J; 2021 Feb; 19(2):351-364. PubMed ID: 32816361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HEADLESS, a WUSCHEL homolog, uncovers novel aspects of shoot meristem regulation and leaf blade development in Medicago truncatula.
    Meng Y; Liu H; Wang H; Liu Y; Zhu B; Wang Z; Hou Y; Zhang P; Wen J; Yang H; Mysore KS; Chen J; Tadege M; Niu L; Lin H
    J Exp Bot; 2019 Jan; 70(1):149-163. PubMed ID: 30272208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach.
    Zhou Y; Zhou H; Lin-Wang K; Vimolmangkang S; Espley RV; Wang L; Allan AC; Han Y
    BMC Plant Biol; 2014 Dec; 14():388. PubMed ID: 25551393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.).
    Suzuki K; Suzuki T; Nakatsuka T; Dohra H; Yamagishi M; Matsuyama K; Matsuura H
    BMC Genomics; 2016 Aug; 17(1):611. PubMed ID: 27516339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot.
    Xu ZS; Yang QQ; Feng K; Yu X; Xiong AS
    Plant Biotechnol J; 2020 Jul; 18(7):1585-1597. PubMed ID: 31910327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-Wide Identification and Characterization of DIR Genes in Medicago truncatula.
    Song M; Peng X
    Biochem Genet; 2019 Aug; 57(4):487-506. PubMed ID: 30649641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of very long-chain fatty acids in compound leaf patterning in Medicago truncatula.
    Wang H; Lu Z; Xu Y; Zhang J; Han L; Chai M; Wang ZY; Yang X; Lu S; Tong J; Xiao L; Wen J; Mysore KS; Zhou C
    Plant Physiol; 2023 Mar; 191(3):1751-1770. PubMed ID: 36617225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in Red and Green Walnut (Juglans regia L.).
    Li Y; Luo X; Wu C; Cao S; Zhou Y; Jie B; Cao Y; Meng H; Wu G
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29271948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves.
    D'Amelia V; Aversano R; Batelli G; Caruso I; Castellano Moreno M; Castro-Sanz AB; Chiaiese P; Fasano C; Palomba F; Carputo D
    Plant J; 2014 Nov; 80(3):527-40. PubMed ID: 25159050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.