BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32913055)

  • 1. Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish.
    Yang T; Jia Z; Chen H; Deng Z; Liu W; Chen L; Li L
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23450-23459. PubMed ID: 32913055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: A computational study.
    Lee E; Jia Z; Yang T; Li L
    Acta Biomater; 2022 Dec; 154():312-323. PubMed ID: 36184057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically Efficient Cellular Materials Inspired by Cuttlebone.
    Mao A; Zhao N; Liang Y; Bai H
    Adv Mater; 2021 Apr; 33(15):e2007348. PubMed ID: 33675262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired lightweight cellular materials--understanding effects of natural variation on mechanical properties.
    Cadman J; Chang CC; Chen J; Chen Y; Zhou S; Li W; Li Q
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3146-52. PubMed ID: 23706194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae).
    Sherrard KM
    Biol Bull; 2000 Jun; 198(3):404-14. PubMed ID: 10897454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone.
    Le Pabic C; Marie A; Marie B; Percot A; Bonnaud-Ponticelli L; Lopez PJ; Luquet G
    J Proteomics; 2017 Jan; 150():63-73. PubMed ID: 27576138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Dynamics in Dual Channels: Inspired by Cuttlebone.
    Huang M; Frohlich K; Esmaili E; Yang T; Li L; Jung S
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor.
    Checa AG; Cartwright JH; Sánchez-Almazo I; Andrade JP; Ruiz-Raya F
    Sci Rep; 2015 Jun; 5():11513. PubMed ID: 26086668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and morphogenesis of a cuttlebone's aragonite biomineral structures for the common cuttlefish (Sepia officinalis) on the nanoscale: Revisited.
    Čadež V; Škapin SD; Leonardi A; Križaj I; Kazazić S; Salopek-Sondi B; Sondi I
    J Colloid Interface Sci; 2017 Dec; 508():95-104. PubMed ID: 28822865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical performance and in vivo tests of an acrylic bone cement filled with bioactive sepia officinalis cuttlebone.
    García-Enriquez S; Guadarrama HE; Reyes-González I; Mendizábal E; Jasso-Gastinel CF; García-Enriquez B; Rembao-Bojórquez D; Pane-Pianese C
    J Biomater Sci Polym Ed; 2010; 21(1):113-25. PubMed ID: 20040157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cuttlefish Buoyancy in Response to Food Availability and Ocean Acidification.
    Otjacques E; Repolho T; Paula JR; Simão S; Baptista M; Rosa R
    Biology (Basel); 2020 Jul; 9(7):. PubMed ID: 32630264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on functional mechanical performance of array structures inspired by cuttlebone.
    Wu F; Sun BH
    J Mech Behav Biomed Mater; 2022 Dec; 136():105459. PubMed ID: 36302273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics of Shell Matrix Proteins from the Cuttlefish Bone Reveals Unique Evolution for Cephalopod Biomineralization.
    Liu C; Ji X; Huang J; Wang Z; Liu Y; Hincke MT
    ACS Biomater Sci Eng; 2023 Apr; 9(4):1796-1807. PubMed ID: 34468131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Calcination of
    Thum JY; Sin LT; Bee ST; Lim JV; Bee SL
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Age and growth characteristic of
    Qu JY; Zhou MH; Han PW; Fang Z; Chen XJ
    Ying Yong Sheng Tai Xue Bao; 2021 May; 32(5):1873-1880. PubMed ID: 34042384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral laterality and morphological asymmetry in the cuttlefish, Sepia lycidas.
    Lucky NS; Ihara R; Yamaoka K; Hori M
    Zoolog Sci; 2012 May; 29(5):286-92. PubMed ID: 22559961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed protection strategies of the brainy Elaeocarpus ganitrus endocarp: Gradient motif yields fracture tolerance.
    Ghimire A; Chen PY
    Acta Biomater; 2022 Jan; 138():430-442. PubMed ID: 34728425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis.
    Chen H; Yang T; Wu Z; Deng Z; Zhu Y; Li L
    Acta Biomater; 2020 Apr; 107():218-231. PubMed ID: 32151699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling.
    de Obaldia EE; Jeong C; Grunenfelder LK; Kisailus D; Zavattieri P
    J Mech Behav Biomed Mater; 2015 Aug; 48():70-85. PubMed ID: 25913610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.