These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32913059)

  • 1. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs.
    Versantvoort W; Pol A; Jetten MSM; van Niftrik L; Reimann J; Kartal B; Op den Camp HJM
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24459-24463. PubMed ID: 32913059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase.
    Caranto JD; Lancaster KM
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8217-8222. PubMed ID: 28716929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme P460: A (Cross) Link to Nitric Oxide.
    Coleman RE; Lancaster KM
    Acc Chem Res; 2020 Dec; 53(12):2925-2935. PubMed ID: 33180458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath.
    Poret-Peterson AT; Graham JE; Gulledge J; Klotz MG
    ISME J; 2008 Dec; 2(12):1213-20. PubMed ID: 18650926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria.
    Campbell MA; Nyerges G; Kozlowski JA; Poret-Peterson AT; Stein LY; Klotz MG
    FEMS Microbiol Lett; 2011 Sep; 322(1):82-9. PubMed ID: 21682764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs.
    Carere CR; Hards K; Houghton KM; Power JF; McDonald B; Collet C; Gapes DJ; Sparling R; Boyd ES; Cook GM; Greening C; Stott MB
    ISME J; 2017 Nov; 11(11):2599-2610. PubMed ID: 28777381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV.
    Anvar SY; Frank J; Pol A; Schmitz A; Kraaijeveld K; den Dunnen JT; Op den Camp HJ
    BMC Genomics; 2014 Oct; 15(1):914. PubMed ID: 25331649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers.
    Bédard C; Knowles R
    Microbiol Rev; 1989 Mar; 53(1):68-84. PubMed ID: 2496288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanol Production by "
    Hogendoorn C; Pol A; Nuijten GHL; Op den Camp HJM
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32631865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonia Oxidation and Nitrite Reduction in the Verrucomicrobial Methanotroph
    Mohammadi SS; Pol A; van Alen T; Jetten MSM; Op den Camp HJM
    Front Microbiol; 2017; 8():1901. PubMed ID: 29021790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and product distribution analysis of NO* reductase activity in Nitrosomonas europaea hydroxylamine oxidoreductase.
    Kostera J; Youngblut MD; Slosarczyk JM; Pacheco AA
    J Biol Inorg Chem; 2008 Sep; 13(7):1073-83. PubMed ID: 18553112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase.
    Schmitz RA; Picone N; Singer H; Dietl A; Seifert KA; Pol A; Jetten MSM; Barends TRM; Daumann LJ; Op den Camp HJM
    mBio; 2021 Oct; 12(5):e0170821. PubMed ID: 34544276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a nitrite-reducing octaheme hydroxylamine oxidoreductase that lacks the tyrosine cross-link.
    Ferousi C; Schmitz RA; Maalcke WJ; Lindhoud S; Versantvoort W; Jetten MSM; Reimann J; Kartal B
    J Biol Chem; 2021; 296():100476. PubMed ID: 33652023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel cytochrome c
    Versantvoort W; Pol A; Daumann LJ; Larrabee JA; Strayer AH; Jetten MSM; van Niftrik L; Reimann J; Op den Camp HJM
    Biochim Biophys Acta Proteins Proteom; 2019 Jun; 1867(6):595-603. PubMed ID: 30954577
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Hara S; Wada N; Hsiao SS; Zhang M; Bao Z; Iizuka Y; Lee DC; Sato S; Tang SL; Minamisawa K
    mBio; 2022 Jun; 13(3):e0125522. PubMed ID: 35608299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria.
    Nyerges G; Stein LY
    FEMS Microbiol Lett; 2009 Aug; 297(1):131-6. PubMed ID: 19566684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria.
    Arp DJ; Stein LY
    Crit Rev Biochem Mol Biol; 2003; 38(6):471-95. PubMed ID: 14695127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More Than a Methanotroph: A Broader Substrate Spectrum for
    Picone N; Mohammadi SS; Waajen AC; van Alen TA; Jetten MSM; Pol A; Op den Camp HJM
    Front Microbiol; 2020; 11():604485. PubMed ID: 33381099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric Oxide Production from Nitrite Reduction and Hydroxylamine Oxidation by Copper-containing Dissimilatory Nitrite Reductase (NirK) from the Aerobic Ammonia-oxidizing Archaeon, Nitrososphaera viennensis.
    Kobayashi S; Hira D; Yoshida K; Toyofuku M; Shida Y; Ogasawara W; Yamaguchi T; Araki N; Oshiki M
    Microbes Environ; 2018 Dec; 33(4):428-434. PubMed ID: 30318500
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Guo K; Hakobyan A; Glatter T; Paczia N; Liesack W
    mSystems; 2022 Oct; 7(5):e0040322. PubMed ID: 36154142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.