These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin. Kohus Z; Káli S; Rovira-Esteban L; Schlingloff D; Papp O; Freund TF; Hájos N; Gulyás AI J Physiol; 2016 Jul; 594(13):3745-74. PubMed ID: 27038232 [TBL] [Abstract][Full Text] [Related]
5. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators. Donoso JR; Schmitz D; Maier N; Kempter R J Neurosci; 2018 Mar; 38(12):3124-3146. PubMed ID: 29453207 [TBL] [Abstract][Full Text] [Related]
6. Sleep Deprivation Impairs Learning-Induced Increase in Hippocampal Sharp Wave Ripples and Associated Spike Dynamics during Recovery Sleep. Li RR; Yan J; Chen H; Zhang WW; Hu YB; Zhang J; Hu ZA; Xiong Y; Yao ZX; Hu B Cereb Cortex; 2022 Feb; 32(4):824-838. PubMed ID: 34383018 [TBL] [Abstract][Full Text] [Related]
7. Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro. Hájos N; Karlócai MR; Németh B; Ulbert I; Monyer H; Szabó G; Erdélyi F; Freund TF; Gulyás AI J Neurosci; 2013 Jul; 33(28):11677-91. PubMed ID: 23843535 [TBL] [Abstract][Full Text] [Related]
8. Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States. Tang W; Shin JD; Frank LM; Jadhav SP J Neurosci; 2017 Dec; 37(49):11789-11805. PubMed ID: 29089440 [TBL] [Abstract][Full Text] [Related]
9. Disruption of perineuronal nets increases the frequency of sharp wave ripple events. Sun ZY; Bozzelli PL; Caccavano A; Allen M; Balmuth J; Vicini S; Wu JY; Conant K Hippocampus; 2018 Jan; 28(1):42-52. PubMed ID: 28921856 [TBL] [Abstract][Full Text] [Related]
10. Disrupted hippocampal sharp-wave ripple-associated spike dynamics in a transgenic mouse model of dementia. Witton J; Staniaszek LE; Bartsch U; Randall AD; Jones MW; Brown JT J Physiol; 2016 Aug; 594(16):4615-30. PubMed ID: 25480798 [TBL] [Abstract][Full Text] [Related]
11. Sharp-wave ripple features in macaques depend on behavioral state and cell-type specific firing. Hussin AT; Leonard TK; Hoffman KL Hippocampus; 2020 Jan; 30(1):50-59. PubMed ID: 30371963 [TBL] [Abstract][Full Text] [Related]
12. Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice. Meier K; Merseburg A; Isbrandt D; Marguet SL; Morellini F J Neurosci; 2020 Sep; 40(37):7105-7118. PubMed ID: 32817247 [TBL] [Abstract][Full Text] [Related]
13. Postnatal Maturation of Membrane Potential Dynamics during Noguchi A; Matsumoto N; Ikegaya Y J Neurosci; 2023 Aug; 43(35):6126-6140. PubMed ID: 37400254 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory control of sharp-wave ripple duration during learning in hippocampal recurrent networks. Vancura B; Geiller T; Grosmark A; Zhao V; Losonczy A Nat Neurosci; 2023 May; 26(5):788-797. PubMed ID: 37081295 [TBL] [Abstract][Full Text] [Related]
18. Status epilepticus induces chronic silencing of burster and dominance of regular firing neurons during sharp wave-ripples in the mouse subiculum. Lippmann K; Klaft ZJ; Salar S; Hollnagel JO; Valero M; Maslarova A Neurobiol Dis; 2022 Dec; 175():105929. PubMed ID: 36410634 [TBL] [Abstract][Full Text] [Related]
19. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Joo HR; Frank LM Nat Rev Neurosci; 2018 Dec; 19(12):744-757. PubMed ID: 30356103 [TBL] [Abstract][Full Text] [Related]
20. Reorganization of CA1 dendritic dynamics by hippocampal sharp-wave ripples during learning. Rolotti SV; Blockus H; Sparks FT; Priestley JB; Losonczy A Neuron; 2022 Mar; 110(6):977-991.e4. PubMed ID: 35041805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]