These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32913109)

  • 21. Neonatal sensory deprivation induces selective changes in the quantitative distribution of GABA-immunoreactive neurons in the rat barrel field cortex.
    Micheva KD; Beaulieu C
    J Comp Neurol; 1995 Oct; 361(4):574-84. PubMed ID: 8576415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Callosal projections in rat somatosensory cortex are altered by early removal of afferent input.
    Koralek KA; Killackey HP
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1396-400. PubMed ID: 2304906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Embryonic neurons transplanted to regions of targeted photolytic cell death in adult mouse somatosensory cortex re-form specific callosal projections.
    Hernit-Grant CS; Macklis JD
    Exp Neurol; 1996 May; 139(1):131-42. PubMed ID: 8635560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use-dependent plasticity in barrel cortex: intrinsic signal imaging reveals functional expansion of spared whisker representation into adjacent deprived columns.
    Dubroff JG; Stevens RT; Hitt J; Maier DL; McCasland JS; Hodge CJ
    Somatosens Mot Res; 2005; 22(1-2):25-35. PubMed ID: 16191755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experience-dependent plasticity of rat barrel cortex: redistribution of activity across barrel-columns.
    Lebedev MA; Mirabella G; Erchova I; Diamond ME
    Cereb Cortex; 2000 Jan; 10(1):23-31. PubMed ID: 10639392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortical layer-specific modulation of neuronal activity after sensory deprivation due to spinal cord injury.
    Zaforas M; Rosa JM; Alonso-Calviño E; Fernández-López E; Miguel-Quesada C; Oliviero A; Aguilar J
    J Physiol; 2021 Oct; 599(20):4643-4669. PubMed ID: 34418097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relevance of the callosal transfer in defining the peripheral reactivity of somesthetic cortical neurones.
    Innocenti GM; Manzoni T; Spidalieri G
    Arch Ital Biol; 1973 Jun; 111(2):187-221. PubMed ID: 18843823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sleep deprivation but not a whisker trim increases nerve growth factor within barrel cortical neurons.
    Brandt JA; Churchill L; Guan Z; Fang J; Chen L; Krueger JM
    Brain Res; 2001 Apr; 898(1):105-12. PubMed ID: 11292453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peripheral nerve injury induces immediate increases in layer v neuronal activity.
    Han Y; Li N; Zeiler SR; Pelled G
    Neurorehabil Neural Repair; 2013 Sep; 27(7):664-72. PubMed ID: 23599222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A critical period for experience-dependent synaptic plasticity in rat barrel cortex.
    Fox K
    J Neurosci; 1992 May; 12(5):1826-38. PubMed ID: 1578273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The postnatal development of somatosensory callosal connections after partial lesions of somatosensory areas.
    Caminiti R; Innocenti GM
    Exp Brain Res; 1981; 42(1):53-62. PubMed ID: 7215510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated technology for evaluation of brain function and neural plasticity.
    Rossini PM; Dal Forno G
    Phys Med Rehabil Clin N Am; 2004 Feb; 15(1):263-306. PubMed ID: 15029909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repetitive microstimulation in rat primary somatosensory cortex (SI) strengthens the connection between homotopic sites in the opposite SI and leads to expression of previously ineffective input from the ipsilateral forelimb.
    DeCosta-Fortune TM; Ramshur JT; Li CX; de Jongh Curry A; Pellicer-Morata V; Wang L; Waters RS
    Brain Res; 2020 Apr; 1732():146694. PubMed ID: 32017899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid adult experience-dependent anatomical plasticity in layer IV of primary somatosensory cortex.
    Chau LS; Akhtar O; Mohan V; Kondilis A; Galvez R
    Brain Res; 2014 Jan; 1543():93-100. PubMed ID: 24183785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex.
    Shepherd GM; Pologruto TA; Svoboda K
    Neuron; 2003 Apr; 38(2):277-89. PubMed ID: 12718861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peripheral deafferentation-driven functional somatosensory map shifts are associated with local, not large-scale dendritic structural plasticity.
    Schubert V; Lebrecht D; Holtmaat A
    J Neurosci; 2013 May; 33(22):9474-87. PubMed ID: 23719814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs.
    Swadlow HA
    J Neurophysiol; 1994 Feb; 71(2):437-53. PubMed ID: 8176419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.
    Fame RM; MacDonald JL; Dunwoodie SL; Takahashi E; Macklis JD
    J Neurosci; 2016 Jun; 36(24):6403-19. PubMed ID: 27307230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats.
    Glazewski S; Fox K
    J Neurophysiol; 1996 Apr; 75(4):1714-29. PubMed ID: 8727408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ipsilateral whiskers suppress experience-dependent plasticity in the barrel cortex.
    Glazewski S; Benedetti BL; Barth AL
    J Neurosci; 2007 Apr; 27(14):3910-20. PubMed ID: 17409256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.