BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32913205)

  • 1. Transcriptional analysis of cleft palate in TGFβ3 mutant mice.
    Liu J; Chanumolu SK; White KM; Albahrani M; Otu HH; Nawshad A
    Sci Rep; 2020 Sep; 10(1):14940. PubMed ID: 32913205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice.
    Ozturk F; Li Y; Zhu X; Guda C; Nawshad A
    BMC Genomics; 2013 Feb; 14():113. PubMed ID: 23421592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMAD2 overexpression rescues the TGF-β3 null mutant mice cleft palate by increased apoptosis.
    AlMegbel AM; Shuler CF
    Differentiation; 2020; 111():60-69. PubMed ID: 31677482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycoprotein A repetitions predominant (GARP) positively regulates transforming growth factor (TGF) β3 and is essential for mouse palatogenesis.
    Wu BX; Li A; Lei L; Kaneko S; Wallace C; Li X; Li Z
    J Biol Chem; 2017 Nov; 292(44):18091-18097. PubMed ID: 28912269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq analysis of palatal transcriptome changes in all-trans retinoic acid-induced cleft palate of mice.
    Peng Y; Wang XH; Su CN; Qiao WW; Gao Q; Sun XF; Meng LY
    Environ Toxicol Pharmacol; 2020 Nov; 80():103438. PubMed ID: 32569741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and spatial expression of Pax9 and Sonic hedgehog during development of normal mouse palates and cleft palates in TGF-beta3 null embryos.
    Sasaki Y; O'Kane S; Dixon J; Dixon MJ; Ferguson MW
    Arch Oral Biol; 2007 Mar; 52(3):260-7. PubMed ID: 17097601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide mRNA-Seq Profiling Reveals that LEF1 and SMAD3 Regulate Epithelial-Mesenchymal Transition Through the Hippo Signaling Pathway During Palatal Fusion.
    Shu X; Shu S; Cheng H
    Genet Test Mol Biomarkers; 2019 Mar; 23(3):197-203. PubMed ID: 30767676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tgfb1 expressed in the Tgfb3 locus partially rescues the cleft palate phenotype of Tgfb3 null mutants.
    Yang LT; Kaartinen V
    Dev Biol; 2007 Dec; 312(1):384-95. PubMed ID: 17967447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.
    Lane J; Yumoto K; Azhar M; Ninomiya-Tsuji J; Inagaki M; Hu Y; Deng CX; Kim J; Mishina Y; Kaartinen V
    Dev Biol; 2015 Feb; 398(2):231-41. PubMed ID: 25523394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of proliferation, TGF-β3 promoter methylation, and Smad signaling in MEPM cells during the development of ATRA-induced cleft palate.
    Liu X; Qi J; Tao Y; Zhang H; Yin J; Ji M; Gao Z; Li Z; Li N; Yu Z
    Reprod Toxicol; 2016 Jun; 61():1-9. PubMed ID: 26916447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.
    Pelikan RC; Iwata J; Suzuki A; Chai Y; Hacia JG
    J Cell Biochem; 2013 Apr; 114(4):796-807. PubMed ID: 23060211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate.
    Cui XM; Shiomi N; Chen J; Saito T; Yamamoto T; Ito Y; Bringas P; Chai Y; Shuler CF
    Dev Biol; 2005 Feb; 278(1):193-202. PubMed ID: 15649471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Follistatin antagonizes transforming growth factor-beta3-induced epithelial-mesenchymal transition in vitro: implications for murine palatal development supported by microarray analysis.
    Nogai H; Rosowski M; Grün J; Rietz A; Debus N; Schmidt G; Lauster C; Janitz M; Vortkamp A; Lauster R
    Differentiation; 2008 Apr; 76(4):404-16. PubMed ID: 18028449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of cleft-palate and alteration of Tgf-β(3) expression and the mechanisms leading to palatal fusion in mice following dietary folic-acid deficiency.
    Maldonado E; Murillo J; Barrio C; del Río A; Pérez-Miguelsanz J; López-Gordillo Y; Partearroyo T; Paradas I; Maestro C; Martínez-Sanz E; Varela-Moreiras G; Martínez-Álvarez C
    Cells Tissues Organs; 2011; 194(5):406-20. PubMed ID: 21293104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway.
    Dudas M; Nagy A; Laping NJ; Moustakas A; Kaartinen V
    Dev Biol; 2004 Feb; 266(1):96-108. PubMed ID: 14729481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MiR-106a-5p modulates apoptosis and metabonomics changes by TGF-β/Smad signaling pathway in cleft palate.
    Zhang W; Shen Z; Xing Y; Zhao H; Liang Y; Chen J; Zhong X; Shi L; Wan X; Zhou J; Tang S
    Exp Cell Res; 2020 Jan; 386(2):111734. PubMed ID: 31770533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-amniotic transient transduction of the periderm with a viral vector encoding TGFβ3 prevents cleft palate in Tgfβ3(-/-) mouse embryos.
    Wu C; Endo M; Yang BH; Radecki MA; Davis PF; Zoltick PW; Spivak RM; Flake AW; Kirschner RE; Nah HD
    Mol Ther; 2013 Jan; 21(1):8-17. PubMed ID: 23089732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGFβ3 regulates periderm removal through ΔNp63 in the developing palate.
    Hu L; Liu J; Li Z; Ozturk F; Gurumurthy C; Romano RA; Sinha S; Nawshad A
    J Cell Physiol; 2015 Jun; 230(6):1212-25. PubMed ID: 25358290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of medial-edge epithelium cell adhesion in two Tgf-beta3 null mouse strains.
    Martínez-Sanz E; Del Río A; Barrio C; Murillo J; Maldonado E; Garcillán B; Amorós M; Fuerte T; Fernández A; Trinidad E; Rabadán MA; López Y; Martínez ML; Martínez-Alvarez C
    Differentiation; 2008 Apr; 76(4):417-30. PubMed ID: 18431835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.