BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32913225)

  • 1. Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape.
    Hua B; Jones CP; Mitra J; Murray PJ; Rosenthal R; Ferré-D'Amaré AR; Ha T
    Nat Commun; 2020 Sep; 11(1):4531. PubMed ID: 32913225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing.
    Widom JR; Nedialkov YA; Rai V; Hayes RL; Brooks CL; Artsimovitch I; Walter NG
    Mol Cell; 2018 Nov; 72(3):541-552.e6. PubMed ID: 30388413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranscriptional folding of a riboswitch at nucleotide resolution.
    Watters KE; Strobel EJ; Yu AM; Lis JT; Lucks JB
    Nat Struct Mol Biol; 2016 Dec; 23(12):1124-1131. PubMed ID: 27798597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Discovery Strategies Provide a Basis for Riboswitch Ligand Design.
    Tran B; Pichling P; Tenney L; Connelly CM; Moon MH; Ferré-D'Amaré AR; Schneekloth JS; Jones CP
    Cell Chem Biol; 2020 Oct; 27(10):1241-1249.e4. PubMed ID: 32795418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-crystal structure of the Fusobacterium ulcerans ZTP riboswitch using an X-ray free-electron laser.
    Jones C; Tran B; Conrad C; Stagno J; Trachman R; Fischer P; Meents A; Ferré-D'Amaré A
    Acta Crystallogr F Struct Biol Commun; 2019 Jul; 75(Pt 7):496-500. PubMed ID: 31282869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of cotranscriptional folding in an adenine riboswitch.
    Frieda KL; Block SM
    Science; 2012 Oct; 338(6105):397-400. PubMed ID: 23087247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient computation of co-transcriptional RNA-ligand interaction dynamics.
    Wolfinger MT; Flamm C; Hofacker IL
    Methods; 2018 Jul; 143():70-76. PubMed ID: 29730250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The conformational landscape of transcription intermediates involved in the regulation of the ZMP-sensing riboswitch from Thermosinus carboxydivorans.
    Binas O; Schamber T; Schwalbe H
    Nucleic Acids Res; 2020 Jul; 48(12):6970-6979. PubMed ID: 32479610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms.
    Boudreault J; Perez-Gonzalez DC; Penedo JC; Lafontaine DA
    Methods Mol Biol; 2015; 1334():101-7. PubMed ID: 26404145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control.
    Strobel EJ; Cheng L; Berman KE; Carlson PD; Lucks JB
    Nat Chem Biol; 2019 Nov; 15(11):1067-1076. PubMed ID: 31636437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing.
    Szyjka CE; Strobel EJ
    Nat Commun; 2023 Nov; 14(1):7839. PubMed ID: 38030633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring co-transcriptional folding of riboswitches through helicase unwinding.
    Jones CP; Panja S; Woodson SA; Ferré-D'Amaré AR
    Methods Enzymol; 2019; 623():209-227. PubMed ID: 31239047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
    Steinert H; Sochor F; Wacker A; Buck J; Helmling C; Hiller F; Keyhani S; Noeske J; Grimm S; Rudolph MM; Keller H; Mooney RA; Landick R; Suess B; Fürtig B; Wöhnert J; Schwalbe H
    Elife; 2017 May; 6():. PubMed ID: 28541183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkaline pH has an unexpected effect on transcriptional pausing during synthesis of the Escherichia coli pH-responsive riboswitch.
    Stephen C; Mishanina TV
    J Biol Chem; 2022 Sep; 298(9):102302. PubMed ID: 35934054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation mechanism of yitJ and metF riboswitches.
    Gong S; Wang Y; Zhang W
    J Chem Phys; 2015 Jul; 143(4):045103. PubMed ID: 26233166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration.
    Chauvier A; Dandpat SS; Romero R; Walter NG
    Nat Commun; 2024 May; 15(1):3955. PubMed ID: 38729929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.
    Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB
    Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.