These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32913681)
1. Quantitative proteomics suggests changes in the carbohydrate metabolism of maize in response to larvae of the belowground herbivore Pan Y; Zhao S; Wang Z; Wang X; Zhang X; Lee Y; Xi J PeerJ; 2020; 8():e9819. PubMed ID: 32913681 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Pan Y; Zhao SW; Tang XL; Wang S; Wang X; Zhang XX; Zhou JJ; Xi JH Genome; 2020 Jan; 63(1):1-12. PubMed ID: 31533014 [TBL] [Abstract][Full Text] [Related]
3. The herbivore-induced plant volatile tetradecane enhances plant resistance to Holotrichia parallela larvae in maize roots. Pan Y; Wang Z; Zhao SW; Wang X; Li YS; Liu JN; Wang S; Xi JH Pest Manag Sci; 2022 Feb; 78(2):550-560. PubMed ID: 34585511 [TBL] [Abstract][Full Text] [Related]
4. Immune-related genes of the larval Holotrichia parallela in response to entomopathogenic nematodes Heterorhabditis beicherriana LF. Li E; Qin J; Feng H; Li J; Li X; Nyamwasa I; Cao Y; Ruan W; Li K; Yin J BMC Genomics; 2021 Mar; 22(1):192. PubMed ID: 33731017 [TBL] [Abstract][Full Text] [Related]
5. DIFFERENTIAL PROTEOME ANALYSIS OF THE MALE AND FEMALE ANTENNAE FROM Holotrichia parallela. Zhang JH; Wang S; Yang S; Yi J; Liu Y; Xi JH Arch Insect Biochem Physiol; 2016 Aug; 92(4):274-87. PubMed ID: 27396371 [TBL] [Abstract][Full Text] [Related]
6. Label-free quantitative proteomics of maize roots from different root zones provides insight into proteins associated with enhance water uptake. Song J; Lu D; Niu Y; Sun H; Zhang P; Dong W; Li Y; Zhang Y; Lu L; Men Q; Zhang X; Ren P; Chen C BMC Genomics; 2022 Mar; 23(1):184. PubMed ID: 35247985 [TBL] [Abstract][Full Text] [Related]
7. Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela. Qin D; Liu XY; Miceli C; Zhang Q; Wang PW BMC Biotechnol; 2019 Oct; 19(1):66. PubMed ID: 31615488 [TBL] [Abstract][Full Text] [Related]
8. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. Castano-Duque L; Helms A; Ali JG; Luthe DS J Chem Ecol; 2018 Aug; 44(7-8):727-745. PubMed ID: 29926336 [TBL] [Abstract][Full Text] [Related]
9. Identification and functional analysis of two potential RNAi targets for chitin degradation in Holotrichia parallela Motschulsky (Insecta Coleoptera). Zhao D; Liu X; Liu Z; HanWu ; Lu X; Guo W Pestic Biochem Physiol; 2022 Nov; 188():105257. PubMed ID: 36464362 [TBL] [Abstract][Full Text] [Related]
10. Plants recruit insecticidal bacteria to defend against herbivore attacks. Xu W; Sun X; Mi L; Wang K; Gu Z; Wang M; Shu C; Bai X; Zhang J; Geng L Microbiol Res; 2024 Apr; 281():127597. PubMed ID: 38266597 [TBL] [Abstract][Full Text] [Related]
11. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Geng LL; Shao GX; Raymond B; Wang ML; Sun XX; Shu CL; Zhang J Microbiol Res; 2018 Jun; 211():13-20. PubMed ID: 29705202 [TBL] [Abstract][Full Text] [Related]
12. Involvement of Holotrichia parallela odorant-binding protein 3 in the localization of oviposition sites. Li ET; Wu HJ; Qin JH; Luo J; Li KB; Cao YZ; Zhang S; Peng Y; Yin J Int J Biol Macromol; 2023 Jul; 242(Pt 1):124744. PubMed ID: 37148950 [TBL] [Abstract][Full Text] [Related]
13. Identification of Potential Gene Targets for Suppressing Oviposition in Gong Z; Zhang J; Li Y; Li H; Zhang Z; Qin Y; Jiang Y; Duan Y; Li T; Miao J; Wu Y Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685945 [No Abstract] [Full Text] [Related]
14. Nutritional composition and protein quality of the edible beetle Holotrichia parallela. Yang Q; Liu S; Sun J; Yu L; Zhang C; Bi J; Yang Z J Insect Sci; 2014 Oct; 14():139. PubMed ID: 25347830 [TBL] [Abstract][Full Text] [Related]
15. High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae. Sheng P; Li Y; Marshall SD; Zhang H Int J Mol Sci; 2015 Jul; 16(7):16545-59. PubMed ID: 26197317 [TBL] [Abstract][Full Text] [Related]
16. Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis. Shu C; Tan S; Yin J; Soberón M; Bravo A; Liu C; Geng L; Song F; Li K; Zhang J Appl Microbiol Biotechnol; 2015 Sep; 99(17):7209-18. PubMed ID: 26135984 [TBL] [Abstract][Full Text] [Related]
17. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. Wang X; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Xue C; Yuan Y J Proteomics; 2016 Sep; 146():14-24. PubMed ID: 27321579 [TBL] [Abstract][Full Text] [Related]
18. Identification and tissue expression profiling of candidate UDP-glycosyltransferase genes expressed in Holotrichia parallela motschulsky antennae. Wang S; Liu Y; Zhou JJ; Yi JK; Pan Y; Wang J; Zhang XX; Wang JX; Yang S; Xi JH Bull Entomol Res; 2018 Dec; 108(6):807-816. PubMed ID: 29397056 [TBL] [Abstract][Full Text] [Related]
19. Identification of a new peritrophic membrane protein from larval Holotrichia parallela (Coleoptera: Motschulsky). Zhao D; Guo W; Li S; Li R; Xu D; Lu X Molecules; 2014 Nov; 19(11):17799-809. PubMed ID: 25372395 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomic analysis of maize (Zea mays L.) seedlings under rice black-streaked dwarf virus infection. Yue R; Lu C; Han X; Guo S; Yan S; Liu L; Fu X; Chen N; Guo X; Chi H; Tie S BMC Plant Biol; 2018 Sep; 18(1):191. PubMed ID: 30208842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]