BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32913929)

  • 1. Advanced protein adsorption properties of a novel silicate-based bioceramic: A proteomic analysis.
    Deng F; Zhai W; Yin Y; Peng C; Ning C
    Bioact Mater; 2021 Jan; 6(1):208-218. PubMed ID: 32913929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Favorable osteogenic activity of iron doped in silicocarnotite bioceramic: In vitro and
    Zhang J; Deng F; Liu X; Ge Y; Zeng Y; Zhai Z; Ning C; Li H
    J Orthop Translat; 2022 Jan; 32():103-111. PubMed ID: 35228992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Interposition of Calcium Phosphate Materials on Tendon-Bone Healing During Repair of Chronic Rotator Cuff Tear.
    Zhao S; Peng L; Xie G; Li D; Zhao J; Ning C
    Am J Sports Med; 2014 Aug; 42(8):1920-9. PubMed ID: 24853168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferric oxide: A favorable additive to balance mechanical strength and biological activity of silicocarnotite bioceramic.
    Deng F; Rao J; Ning C
    J Mech Behav Biomed Mater; 2020 Sep; 109():103819. PubMed ID: 32543394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite.
    Duan W; Ning C; Tang T
    J Biomed Mater Res A; 2013 Jul; 101(7):1955-61. PubMed ID: 23225789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper containing silicocarnotite bioceramic with improved mechanical strength and antibacterial activity.
    Xu S; Wu Q; Guo Y; Ning C; Dai K
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111493. PubMed ID: 33255060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary and synergistic effects on osteogenic and angiogenic properties of copper-incorporated silicocarnotite bioceramic: In vitro and in vivo studies.
    Wu Q; Xu S; Wang X; Jia B; Han Y; Zhuang Y; Sun Y; Sun Z; Guo Y; Kou H; Ning C; Dai K
    Biomaterials; 2021 Jan; 268():120553. PubMed ID: 33253963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of hydroxyapatite nanoparticles for bone regeneration by controlling their surface hydration and protein adsorption states.
    Liu Z; Yamada S; Otsuka Y; Peñaflor Galindo TG; Tagaya M
    Dalton Trans; 2022 Jun; 51(25):9572-9583. PubMed ID: 35699123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblastic and anti-osteoclastic activities of strontium-substituted silicocarnotite ceramics: In vitro and
    Zeng J; Guo J; Sun Z; Deng F; Ning C; Xie Y
    Bioact Mater; 2020 Sep; 5(3):435-446. PubMed ID: 32280833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct mechanisms of iron and zinc metal ions on osteo-immunomodulation of silicocarnotite bioceramics.
    Deng F; Han X; Ji Y; Jin Y; Shao Y; Zhang J; Ning C
    Mater Today Bio; 2024 Jun; 26():101086. PubMed ID: 38765245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoimmune reaction caused by a novel silicocarnotite bioceramic promoting osteogenesis through the MAPK pathway.
    Han X; Deng F; Zhu R; Li K; Yang S; Jin L; Ma Z; Ning C; Shi X; Li Y
    Biomater Sci; 2022 May; 10(11):2877-2891. PubMed ID: 35446322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration.
    Huang Y; Wu C; Zhang X; Chang J; Dai K
    Acta Biomater; 2018 Jan; 66():81-92. PubMed ID: 28864248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realizing Both Antibacterial Activity and Cytocompatibility in Silicocarnotite Bioceramic via Germanium Incorporation.
    Ji Y; Yang S; Sun J; Ning C
    J Funct Biomater; 2023 Mar; 14(3):. PubMed ID: 36976078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Cell-Biological Performances of Hydroxyapatite Bioceramic by Constructing Silicate-Containing Grain Boundary Phases via Sol Infiltration.
    Xu Y; Lu T; He F; Ma N; Ye J; Wu T
    ACS Biomater Sci Eng; 2018 Sep; 4(9):3154-3162. PubMed ID: 33435056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells.
    Zhao C; Wang X; Gao L; Jing L; Zhou Q; Chang J
    Acta Biomater; 2018 Jun; 73():509-521. PubMed ID: 29678674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicate-based bioceramics regulating osteoblast differentiation through a BMP2 signalling pathway.
    Zhai D; Xu M; Liu L; Chang J; Wu C
    J Mater Chem B; 2017 Sep; 5(35):7297-7306. PubMed ID: 32264179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-assisted synthesis of nanocrystallized silicocarnotite biomaterial with improved sinterability and osteogenic activity.
    Xu S; Wu Q; Wu J; Kou H; Zhu Y; Ning C; Dai K
    J Mater Chem B; 2020 Apr; 8(15):3092-3103. PubMed ID: 32207759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.
    Yang D; Lü X; Hong Y; Xi T; Zhang D
    Biomaterials; 2013 Jul; 34(23):5747-58. PubMed ID: 23660250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nagelschmidtite bioceramics with osteostimulation properties: material chemistry activating osteogenic genes and WNT signalling pathway of human bone marrow stromal cells.
    Wu C; Han P; Xu M; Zhang X; Zhou Y; Xue G; Chang J; Xiao Y
    J Mater Chem B; 2013 Feb; 1(6):876-885. PubMed ID: 32260747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-Shell Structured Porous Calcium Phosphate Bioceramic Spheres for Enhanced Bone Regeneration.
    Wu Y; Yang L; Chen L; Geng M; Xing Z; Chen S; Zeng Y; Zhou J; Sun K; Yang X; Shen B
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47491-47506. PubMed ID: 36251859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.