BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 32914148)

  • 1. Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS.
    Mitrofanova A; Drexler Y; Merscher S; Fornoni A
    J Cell Signal; 2020 Sep; 1(3):56-69. PubMed ID: 32914148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases.
    Merscher S; Fornoni A
    Front Endocrinol (Lausanne); 2014; 5():127. PubMed ID: 25126087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases.
    Drexler Y; Molina J; Mitrofanova A; Fornoni A; Merscher S
    J Am Soc Nephrol; 2021 Jan; 32(1):9-31. PubMed ID: 33376112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid mediators of insulin signaling in diabetic kidney disease.
    Mitrofanova A; Sosa MA; Fornoni A
    Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1241-F1252. PubMed ID: 31545927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease.
    Yoo TH; Pedigo CE; Guzman J; Correa-Medina M; Wei C; Villarreal R; Mitrofanova A; Leclercq F; Faul C; Li J; Kretzler M; Nelson RG; Lehto M; Forsblom C; Groop PH; Reiser J; Burke GW; Fornoni A; Merscher S
    J Am Soc Nephrol; 2015 Jan; 26(1):133-47. PubMed ID: 24925721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the amount of ceramide-1-phosphate synthesized in differentiated human podocytes.
    Mallela SK; Mitrofanova A; Merscher S; Fornoni A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Dec; 1864(12):158517. PubMed ID: 31487557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Sphingolipid Mediators on the Determination of Cochlear Survival in Ototoxicity.
    Tabuchi K; Hara A
    Curr Mol Pharmacol; 2018; 11(4):279-284. PubMed ID: 29766830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate.
    Kihara A; Mitsutake S; Mizutani Y; Igarashi Y
    Prog Lipid Res; 2007 Mar; 46(2):126-44. PubMed ID: 17449104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of sphingosine kinase localization in sphingolipid signaling.
    Wattenberg BW
    World J Biol Chem; 2010 Dec; 1(12):362-8. PubMed ID: 21537471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMPDL3b modulates radiation-induced DNA damage response in renal podocytes.
    Francis M; Ahmad A; Bodgi L; Azzam P; Youssef T; Abou Daher A; Eid AA; Fornoni A; Pollack A; Marples B; Zeidan YH
    FASEB J; 2022 Oct; 36(10):e22545. PubMed ID: 36094323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingomyelinase-like phosphodiesterase 3b mediates radiation-induced damage of renal podocytes.
    Ahmad A; Mitrofanova A; Bielawski J; Yang Y; Marples B; Fornoni A; Zeidan YH
    FASEB J; 2017 Feb; 31(2):771-780. PubMed ID: 27836988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implication of ceramide, ceramide 1-phosphate and sphingosine 1-phosphate in tumorigenesis.
    Gangoiti P; Granado MH; Alonso A; Goñi FM; Gómez-Muñoz A
    Transl Oncogenomics; 2008 Apr; 3():81-98. PubMed ID: 21566746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sphingolipid metabolism disorders on endothelial cells.
    Lai Y; Tian Y; You X; Du J; Huang J
    Lipids Health Dis; 2022 Oct; 21(1):101. PubMed ID: 36229882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel agents targeting bioactive sphingolipids for the treatment of cancer.
    Adan-Gokbulut A; Kartal-Yandim M; Iskender G; Baran Y
    Curr Med Chem; 2013; 20(1):108-22. PubMed ID: 23244584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease.
    Mitrofanova A; Mallela SK; Ducasa GM; Yoo TH; Rosenfeld-Gur E; Zelnik ID; Molina J; Varona Santos J; Ge M; Sloan A; Kim JJ; Pedigo C; Bryn J; Volosenco I; Faul C; Zeidan YH; Garcia Hernandez C; Mendez AJ; Leibiger I; Burke GW; Futerman AH; Barisoni L; Ishimoto Y; Inagi R; Merscher S; Fornoni A
    Nat Commun; 2019 Jun; 10(1):2692. PubMed ID: 31217420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomics Reveal Altered Metabolic and Signaling Pathways in Podocytes Exposed to C16 Ceramide-Enriched Lipoproteins.
    Hammad SM; Twal WO; Arif E; Semler AJ; Klein RL; Nihalani D
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32045989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of bioactive sphingolipids in physiology and pathology.
    Gomez-Larrauri A; Presa N; Dominguez-Herrera A; Ouro A; Trueba M; Gomez-Muñoz A
    Essays Biochem; 2020 Sep; 64(3):579-589. PubMed ID: 32579188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR).
    Yokota R; Bhunu B; Toba H; Intapad S
    Kidney360; 2021 Mar; 2(3):534-541. PubMed ID: 35369015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer and sphingolipid storage disease therapy using novel synthetic analogs of sphingolipids.
    Gatt S; Dagan A
    Chem Phys Lipids; 2012 May; 165(4):462-74. PubMed ID: 22387097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of radiation-induced damage of human glomerular endothelial cells by SMPDL3B.
    Abou Daher A; Francis M; Azzam P; Ahmad A; Eid AA; Fornoni A; Marples B; Zeidan YH
    FASEB J; 2020 Jun; 34(6):7915-7926. PubMed ID: 32293077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.