BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32914212)

  • 1. Differential modulation of active expiration during hypercapnia by the medullary raphe in unanesthetized rats.
    Leirão IP; Zoccal DB; Gargaglioni LH; da Silva GSF
    Pflugers Arch; 2020 Nov; 472(11):1563-1576. PubMed ID: 32914212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABAergic neurons of the medullary raphe regulate active expiration during hypercapnia.
    Silva JDN; Oliveira LM; Souza FC; Moreira TS; Takakura AC
    J Neurophysiol; 2020 May; 123(5):1933-1943. PubMed ID: 32267190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats.
    Taylor NC; Li A; Nattie EE
    J Physiol; 2005 Jul; 566(Pt 2):543-57. PubMed ID: 15878953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats.
    Leirão IP; Silva CA; Gargaglioni LH; da Silva GSF
    J Physiol; 2018 Aug; 596(15):3271-3283. PubMed ID: 28776683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats.
    de Britto AA; Moraes DJ
    J Physiol; 2017 Mar; 595(6):2043-2064. PubMed ID: 28004411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of serotonergic medullary raphe obscurus neurons suppresses genioglossus and diaphragm activities in anesthetized but not conscious rats.
    Sood S; Raddatz E; Liu X; Liu H; Horner RL
    J Appl Physiol (1985); 2006 Jun; 100(6):1807-21. PubMed ID: 16484356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Median and dorsal raphe injections of the 5-HT1A agonist, 8-OH-DPAT, and the GABAA agonist, muscimol, increase voluntary ethanol intake in Wistar rats.
    Tomkins DM; Sellers EM; Fletcher PJ
    Neuropharmacology; 1994; 33(3-4):349-58. PubMed ID: 7984273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic modulation of the parafacial respiratory group.
    Boutin RC; Alsahafi Z; Pagliardini S
    J Physiol; 2017 Feb; 595(4):1377-1392. PubMed ID: 27808424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic fluoxetine microdialysis into the medullary raphe nuclei of the rat, but not systemic administration, increases the ventilatory response to CO2.
    Taylor NC; Li A; Green A; Kinney HC; Nattie EE
    J Appl Physiol (1985); 2004 Nov; 97(5):1763-73. PubMed ID: 15273241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phrenic long-term depression evoked by intermittent hypercapnia is modulated by serotonergic and adrenergic receptors in raphe nuclei.
    Stipica Safic I; Pecotic R; Pavlinac Dodig I; Dogas Z; Valic Z; Valic M
    J Neurophysiol; 2018 Jul; 120(1):321-329. PubMed ID: 29617215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active expiratory oscillator regulates nasofacial and oral motor activities in rats.
    de Britto AA; Magalhães KS; da Silva MP; Paton JFR; Moraes DJA
    Exp Physiol; 2020 Feb; 105(2):379-392. PubMed ID: 31820827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets.
    Messier ML; Li A; Nattie EE
    J Appl Physiol (1985); 2004 May; 96(5):1909-19. PubMed ID: 14752121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventilatory effects of muscimol microdialysis into the rostral medullary raphé region of conscious rats.
    Taylor NC; Li A; Nattie EE
    Respir Physiol Neurobiol; 2006 Oct; 153(3):203-16. PubMed ID: 16338178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet.
    Brown JW; Sirlin EA; Benoit AM; Hoffman JM; Darnall RA
    Am J Physiol Regul Integr Comp Physiol; 2008 Mar; 294(3):R884-94. PubMed ID: 18094064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Kölliker-Fuse nucleus orchestrates the timing of expiratory abdominal nerve bursting.
    Barnett WH; Jenkin SEM; Milsom WK; Paton JFR; Abdala AP; Molkov YI; Zoccal DB
    J Neurophysiol; 2018 Feb; 119(2):401-412. PubMed ID: 29070631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The parafacial respiratory group and the control of active expiration.
    Pisanski A; Pagliardini S
    Respir Physiol Neurobiol; 2019 Jul; 265():153-160. PubMed ID: 29933053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats.
    Silva JN; Tanabe FM; Moreira TS; Takakura AC
    Respir Physiol Neurobiol; 2016 Jun; 227():9-22. PubMed ID: 26900003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory control of active expiration by the Bötzinger complex in rats.
    Flor KC; Barnett WH; Karlen-Amarante M; Molkov YI; Zoccal DB
    J Physiol; 2020 Nov; 598(21):4969-4994. PubMed ID: 32621515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of active expiration by serotoninergic mechanisms of the ventral medulla of rats.
    Lemes EV; Colombari E; Zoccal DB
    J Appl Physiol (1985); 2016 Nov; 121(5):1135-1144. PubMed ID: 27660299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purinergic transmission in the rostral but not caudal medullary raphe contributes to the hypercapnia-induced ventilatory response in unanesthetized rats.
    da Silva GS; Moraes DJ; Giusti H; Dias MB; Glass ML
    Respir Physiol Neurobiol; 2012 Oct; 184(1):41-7. PubMed ID: 22842005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.