BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32914260)

  • 1. Enzymatic hydroxylation of L-pipecolic acid by L-proline cis-4-hydroxylases and isomers separation.
    Lu F; Chen J; Ye H; Wu H; Sha F; Huang F; Cao F; Wei P
    Biotechnol Lett; 2020 Dec; 42(12):2607-2617. PubMed ID: 32914260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refined regio- and stereoselective hydroxylation of L-pipecolic acid by protein engineering of L-proline cis-4-hydroxylase based on the X-ray crystal structure.
    Koketsu K; Shomura Y; Moriwaki K; Hayashi M; Mitsuhashi S; Hara R; Kino K; Higuchi Y
    ACS Synth Biol; 2015 Apr; 4(4):383-92. PubMed ID: 25171735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of L-proline trans-hydroxylase reveal the catalytic specificity and provide deeper insight into AKG-dependent hydroxylation.
    Hu X; Huang X; Liu J; Zheng P; Gong W; Yang L
    Acta Crystallogr D Struct Biol; 2023 Apr; 79(Pt 4):318-325. PubMed ID: 36974966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pipecolic Acid Hydroxylases: A Monophyletic Clade among cis-Selective Bacterial Proline Hydroxylases that Discriminates l-Proline.
    Mattay J; Hüttel W
    Chembiochem; 2017 Aug; 18(15):1523-1528. PubMed ID: 28489306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Enzyme Family Found in Filamentous Fungi Catalyzing trans-4-Hydroxylation of L-Pipecolic Acid.
    Hibi M; Mori R; Miyake R; Kawabata H; Kozono S; Takahashi S; Ogawa J
    Appl Environ Microbiol; 2016 Jan; 82(7):2070-2077. PubMed ID: 26801577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. R97 at "Handlebar" Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase
    Guan J; Lu Y; Dai Z; Zhao S; Xu Y; Nie Y
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of 2-oxoglutarate-dependent dioxygenases catalyzing selective cis-hydroxylation of proline and pipecolinic acid from actinomycetes.
    Hara R; Uchiumi N; Kino K
    J Biotechnol; 2014 Feb; 172():55-8. PubMed ID: 24389065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic reactions and microorganisms producing the various isomers of hydroxyproline.
    Hara R; Kino K
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4771-4779. PubMed ID: 32291491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tertiary alcohol preferred: Hydroxylation of trans-3-methyl-L-proline with proline hydroxylases.
    Klein C; Hüttel W
    Beilstein J Org Chem; 2011; 7():1643-7. PubMed ID: 22238542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Ketoglutarate-Generated In Vitro Enzymatic Biosystem Facilitates Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Mediated C-H Bond Oxidation for (2
    Jing XR; Liu H; Nie Y; Xu Y
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32731373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advances in hydroxylation of hydrophobic amino acid].
    Sun D; Cheng X; Guo Q; Xu P; Zhu Z; Qin H; Lu F
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1046-1056. PubMed ID: 30058304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel l-leucine 5-hydroxylase from Nostoc piscinale unravels unexpected sulfoxidation activity toward l-methionine.
    Sun D; Gao D; Xu P; Guo Q; Zhu Z; Cheng X; Bai S; Qin HM; Lu F
    Protein Expr Purif; 2018 Sep; 149():1-6. PubMed ID: 29674115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers.
    Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H
    FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic Synthesis of l-
    Hara R; Nakajima Y; Yanagawa H; Gawasawa R; Hirasawa I; Kino K
    Appl Environ Microbiol; 2021 Sep; 87(20):e0133521. PubMed ID: 34347519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of the mechanism of the "proline effect" in tandem mass spectrometry experiments: the "pipecolic acid effect".
    Raulfs MD; Breci L; Bernier M; Hamdy OM; Janiga A; Wysocki V; Poutsma JC
    J Am Soc Mass Spectrom; 2014 Oct; 25(10):1705-15. PubMed ID: 25078156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli.
    Theodosiou E; Breisch M; Julsing MK; Falcioni F; Bühler B; Schmid A
    Biotechnol Bioeng; 2017 Jul; 114(7):1511-1520. PubMed ID: 28266022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regio- and stereoselective oxygenation of proline derivatives by using microbial 2-oxoglutarate-dependent dioxygenases.
    Hara R; Uchiumi N; Okamoto N; Kino K
    Biosci Biotechnol Biochem; 2014; 78(8):1384-8. PubMed ID: 25130741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Fe(II)/α-ketoglutarate-dependent dioxygenase from Burkholderia ambifaria has β-hydroxylating activity of N-succinyl l-leucine.
    Hibi M; Kawashima T; Kasahara T; Sokolov PM; Smirnov SV; Kodera T; Sugiyama M; Shimizu S; Yokozeki K; Ogawa J
    Lett Appl Microbiol; 2012 Dec; 55(6):414-9. PubMed ID: 22967283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pipecolic acid-catalyzed direct asymmetric mannich reactions.
    Cheong PH; Zhang H; Thayumanavan R; Tanaka F; Houk KN; Barbas CF
    Org Lett; 2006 Mar; 8(5):811-4. PubMed ID: 16494447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli.
    Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C
    Biochemistry; 2003 Jun; 42(24):7497-508. PubMed ID: 12809506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.