These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 32914265)
1. Chitinase family genes in grape differentially expressed in a manner specific to fruit species in response to Botrytis cinerea. Zheng T; Zhang K; Sadeghnezhad E; Jiu S; Zhu X; Dong T; Liu Z; Guan L; Jia H; Fang J Mol Biol Rep; 2020 Oct; 47(10):7349-7363. PubMed ID: 32914265 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the Chitinase Gene Family in Mulberry ( Xin Y; Wang D; Han S; Li S; Gong N; Fan Y; Ji X Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052438 [TBL] [Abstract][Full Text] [Related]
3. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Peian Z; Haifeng J; Peijie G; Sadeghnezhad E; Qianqian P; Tianyu D; Teng L; Huanchun J; Jinggui F Food Chem; 2021 Feb; 337():127772. PubMed ID: 32777571 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide identification and expression analysis reveal the potential function of ethylene responsive factor gene family in response to Botrytis cinerea infection and ovule development in grapes (Vitis vinifera L.). Zhu Y; Li Y; Zhang S; Zhang X; Yao J; Luo Q; Sun F; Wang X Plant Biol (Stuttg); 2019 Jul; 21(4):571-584. PubMed ID: 30468551 [TBL] [Abstract][Full Text] [Related]
5. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Aziz A; Heyraud A; Lambert B Planta; 2004 Mar; 218(5):767-74. PubMed ID: 14618326 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955 [TBL] [Abstract][Full Text] [Related]
7. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
8. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
9. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. Le Hénanff G; Profizi C; Courteaux B; Rabenoelina F; Gérard C; Clément C; Baillieul F; Cordelier S; Dhondt-Cordelier S J Exp Bot; 2013 Nov; 64(16):4877-93. PubMed ID: 24043850 [TBL] [Abstract][Full Text] [Related]
10. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Wang K; Liao Y; Kan J; Han L; Zheng Y Int J Food Microbiol; 2015 Feb; 194():32-9. PubMed ID: 25461606 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Ethylene on the Color Change and Resistance to Dong T; Zheng T; Fu W; Guan L; Jia H; Fang J Foods; 2020 Jul; 9(7):. PubMed ID: 32645910 [TBL] [Abstract][Full Text] [Related]
12. Analysis of WRKY transcription factors and characterization of two Botrytis cinerea-responsive LrWRKY genes from Lilium regale. Cui Q; Yan X; Gao X; Zhang DM; He HB; Jia GX Plant Physiol Biochem; 2018 Jun; 127():525-536. PubMed ID: 29723824 [TBL] [Abstract][Full Text] [Related]
13. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Chong J; Piron MC; Meyer S; Merdinoglu D; Bertsch C; Mestre P J Exp Bot; 2014 Dec; 65(22):6589-601. PubMed ID: 25246444 [TBL] [Abstract][Full Text] [Related]
14. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Zhu Y; Zhang X; Zhang Q; Chai S; Yin W; Gao M; Li Z; Wang X Mol Plant Pathol; 2022 Oct; 23(10):1415-1432. PubMed ID: 35822262 [TBL] [Abstract][Full Text] [Related]
15. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis. Akagi A; Dandekar AM; Stotz HU Phytopathology; 2011 Nov; 101(11):1311-21. PubMed ID: 21809978 [TBL] [Abstract][Full Text] [Related]
16. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740 [TBL] [Abstract][Full Text] [Related]
17. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit. Saavedra GM; Sanfuentes E; Figueroa PM; Figueroa CR Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671619 [TBL] [Abstract][Full Text] [Related]
18. Nonspecific lipid-transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatments. Gomès E; Sagot E; Gaillard C; Laquitaine L; Poinssot B; Sanejouand YH; Delrot S; Coutos-Thévenot P Mol Plant Microbe Interact; 2003 May; 16(5):456-64. PubMed ID: 12744517 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Giordano D; Provenzano S; Ferrandino A; Vitali M; Pagliarani C; Roman F; Cardinale F; Castellarin SD; Schubert A Plant Physiol Biochem; 2016 Apr; 101():23-32. PubMed ID: 26851572 [TBL] [Abstract][Full Text] [Related]