These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32914822)
1. How Parkinson's disease-related mutations disrupt the dimerization of WD40 domain in LRRK2: a comparative molecular dynamics simulation study. Li X; Ye M; Wang Y; Qiu M; Fu T; Zhang J; Zhou B; Lu S Phys Chem Chem Phys; 2020 Sep; 22(36):20421-20433. PubMed ID: 32914822 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of the WD40 domain dimer of LRRK2. Zhang P; Fan Y; Ru H; Wang L; Magupalli VG; Taylor SS; Alessi DR; Wu H Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1579-1584. PubMed ID: 30635421 [TBL] [Abstract][Full Text] [Related]
3. Markov State Models and Molecular Dynamics Simulations Provide Understanding of the Nucleotide-Dependent Dimerization-Based Activation of LRRK2 ROC Domain. Li X; Qi Z; Ni D; Lu S; Chen L; Chen X Molecules; 2021 Sep; 26(18):. PubMed ID: 34577121 [TBL] [Abstract][Full Text] [Related]
4. Structural model of the dimeric Parkinson's protein LRRK2 reveals a compact architecture involving distant interdomain contacts. Guaitoli G; Raimondi F; Gilsbach BK; Gómez-Llorente Y; Deyaert E; Renzi F; Li X; Schaffner A; Jagtap PK; Boldt K; von Zweydorf F; Gotthardt K; Lorimer DD; Yue Z; Burgin A; Janjic N; Sattler M; Versées W; Ueffing M; Ubarretxena-Belandia I; Kortholt A; Gloeckner CJ Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4357-66. PubMed ID: 27357661 [TBL] [Abstract][Full Text] [Related]
5. Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics. Wu CX; Liao J; Park Y; Reed X; Engel VA; Hoang NC; Takagi Y; Johnson SM; Wang M; Federici M; Nichols RJ; Sanishvili R; Cookson MR; Hoang QQ J Biol Chem; 2019 Apr; 294(15):5907-5913. PubMed ID: 30796162 [TBL] [Abstract][Full Text] [Related]
7. Leucine-rich repeat kinase 2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain. Piccoli G; Onofri F; Cirnaru MD; Kaiser CJ; Jagtap P; Kastenmüller A; Pischedda F; Marte A; von Zweydorf F; Vogt A; Giesert F; Pan L; Antonucci F; Kiel C; Zhang M; Weinkauf S; Sattler M; Sala C; Matteoli M; Ueffing M; Gloeckner CJ Mol Cell Biol; 2014 Jun; 34(12):2147-61. PubMed ID: 24687852 [TBL] [Abstract][Full Text] [Related]
8. Molecular insights of the G2019S substitution in LRRK2 kinase domain associated with Parkinson's disease: A molecular dynamics simulation approach. Agrahari AK; Doss GPC; Siva R; Magesh R; Zayed H J Theor Biol; 2019 May; 469():163-171. PubMed ID: 30844370 [TBL] [Abstract][Full Text] [Related]
9. The Parkinson's disease-associated mutation N1437H impairs conformational dynamics in the G domain of LRRK2. Huang X; Wu C; Park Y; Long X; Hoang QQ; Liao J FASEB J; 2019 Apr; 33(4):4814-4823. PubMed ID: 30592623 [TBL] [Abstract][Full Text] [Related]
11. Molecular Modeling Study on the Interaction Mechanism between the LRRK2 G2019S Mutant and Type I Inhibitors by Integrating Molecular Dynamics Simulation, Binding Free Energy Calculations, and Pharmacophore Modeling. Tan S; Zhang Q; Wang J; Gao P; Xie G; Liu H; Yao X ACS Chem Neurosci; 2022 Mar; 13(5):599-612. PubMed ID: 35188741 [TBL] [Abstract][Full Text] [Related]
12. Doubly Constrained C-terminal of Roc (COR) Domain-Derived Peptides Inhibit Leucine-Rich Repeat Kinase 2 (LRRK2) Dimerization. Pathak P; Alexander KK; Helton LG; Kentros M; LeClair TJ; Zhang X; Ho FY; Moore TT; Hall S; Guaitoli G; Gloeckner CJ; Kortholt A; Rideout H; Kennedy EJ ACS Chem Neurosci; 2023 Jun; 14(11):1971-1980. PubMed ID: 37200505 [TBL] [Abstract][Full Text] [Related]
13. L'RRK de Triomphe: a solution for LRRK2 GTPase activity? Nixon-Abell J; Berwick DC; Harvey K Biochem Soc Trans; 2016 Dec; 44(6):1625-1634. PubMed ID: 27913671 [TBL] [Abstract][Full Text] [Related]
14. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. Nguyen AP; Moore DJ Adv Neurobiol; 2017; 14():71-88. PubMed ID: 28353279 [TBL] [Abstract][Full Text] [Related]
15. A designed ankyrin-repeat protein that targets Parkinson's disease-associated LRRK2. Dederer V; Sanz Murillo M; Karasmanis EP; Hatch KS; Chatterjee D; Preuss F; Abdul Azeez KR; Nguyen LV; Galicia C; Dreier B; Plückthun A; Versees W; Mathea S; Leschziner AE; Reck-Peterson SL; Knapp S J Biol Chem; 2024 Jul; 300(7):107469. PubMed ID: 38876305 [TBL] [Abstract][Full Text] [Related]
16. Molecular Insights and Functional Implication of LRRK2 Dimerization. Civiero L; Russo I; Bubacco L; Greggio E Adv Neurobiol; 2017; 14():107-121. PubMed ID: 28353281 [TBL] [Abstract][Full Text] [Related]
17. Leucine-Rich Repeat Kinase (LRRK2) Genetics and Parkinson's Disease. Monfrini E; Di Fonzo A Adv Neurobiol; 2017; 14():3-30. PubMed ID: 28353276 [TBL] [Abstract][Full Text] [Related]
18. First model of dimeric LRRK2: the challenge of unrevealing the structure of a multidomain Parkinson's-associated protein. Guaitoli G; Gilsbach BK; Raimondi F; Gloeckner CJ Biochem Soc Trans; 2016 Dec; 44(6):1635-1641. PubMed ID: 27913672 [TBL] [Abstract][Full Text] [Related]
19. Insights into the Influence of Specific Splicing Events on the Structural Organization of Vlachakis D; Labrou NE; Iliopoulos C; Hardy J; Lewis PA; Rideout H; Trabzuni D Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30223621 [TBL] [Abstract][Full Text] [Related]
20. A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover. Deyaert E; Wauters L; Guaitoli G; Konijnenberg A; Leemans M; Terheyden S; Petrovic A; Gallardo R; Nederveen-Schippers LM; Athanasopoulos PS; Pots H; Van Haastert PJM; Sobott F; Gloeckner CJ; Efremov R; Kortholt A; Versées W Nat Commun; 2017 Oct; 8(1):1008. PubMed ID: 29044096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]