These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32915248)

  • 1. Albumin displacement at the air-water interface by Tween (Polysorbate) surfactants.
    Rabe M; Kerth A; Blume A; Garidel P
    Eur Biophys J; 2020 Oct; 49(7):533-547. PubMed ID: 32915248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.
    Penfold J; Thomas RK; Li PX; Petkov JT; Tucker I; Webster JR; Terry AE
    Langmuir; 2015 Mar; 31(10):3003-11. PubMed ID: 25697294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The film tells the story: Physical-chemical characteristics of IgG at the liquid-air interface.
    Koepf E; Schroeder R; Brezesinski G; Friess W
    Eur J Pharm Biopharm; 2017 Oct; 119():396-407. PubMed ID: 28743595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Influence of Polysorbate 20/80 and Polaxomer P188 on the Surface & Interfacial Properties of Bovine Serum Albumin and Lysozyme.
    Begum F; Amin S
    Pharm Res; 2019 May; 36(7):107. PubMed ID: 31111248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption behavior of lysozyme and Tween 80 at hydrophilic and hydrophobic silica-water interfaces.
    Joshi O; McGuire J
    Appl Biochem Biotechnol; 2009 Feb; 152(2):235-48. PubMed ID: 18478369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Tween(®) 20 on silicone oil-fusion protein interactions.
    Dixit N; Maloney KM; Kalonia DS
    Int J Pharm; 2012 Jun; 429(1-2):158-67. PubMed ID: 22429889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.
    Cai B; Ikeda S
    J Dairy Sci; 2016 Aug; 99(8):6026-6035. PubMed ID: 27265176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-silicone oil interactions: comparative effect of nonionic surfactants on the interfacial behavior of a fusion protein.
    Dixit N; Maloney KM; Kalonia DS
    Pharm Res; 2013 Jul; 30(7):1848-59. PubMed ID: 23568525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of phase transition in adsorbed monolayers at the air/water interface.
    Vollhardt D; Fainerman VB
    Adv Colloid Interface Sci; 2010 Feb; 154(1-2):1-19. PubMed ID: 20153454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of processing on the displacement of whey proteins: applying the orogenic model to a real system.
    Woodward NC; Wilde PJ; Mackie AR; Gunning AP; Gunning PA; Morris VJ
    J Agric Food Chem; 2004 Mar; 52(5):1287-92. PubMed ID: 14995135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ measurement of the displacement of protein films from the air/water interface by surfactant.
    Mackie AR; Gunning AP; Ridout MJ; Wilde PJ; Rodriguez Patino J
    Biomacromolecules; 2001; 2(3):1001-6. PubMed ID: 11710002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids.
    Fainerman VB; Aksenenko EV; Miller R
    Adv Colloid Interface Sci; 2017 Jun; 244():100-112. PubMed ID: 26656422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface.
    Miller R; Fainerman VB; Makievski AV; Krägel J; Grigoriev DO; Kazakov VN; Sinyachenko OV
    Adv Colloid Interface Sci; 2000 May; 86(1-2):39-82. PubMed ID: 10798350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous surface self-assembly in protein-surfactant mixtures: interactions between hydrophobin and ethoxylated polysorbate surfactants.
    Tucker IM; Petkov JT; Penfold J; Thomas RK; Li P; Cox AR; Hedges N; Webster JR
    J Phys Chem B; 2014 May; 118(18):4867-75. PubMed ID: 24738908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Displacement of adsorbed insulin by Tween 80 monitored using total internal reflection fluorescence and ellipsometry.
    Mollmann SH; Elofsson U; Bukrinsky JT; Frokjaer S
    Pharm Res; 2005 Nov; 22(11):1931-41. PubMed ID: 16088428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of levofloxacin with lung surfactant at the air-water interface.
    Ortiz-Collazos S; Estrada-López ED; Pedreira AA; Picciani PHS; Oliveira ON; Pimentel AS
    Colloids Surf B Biointerfaces; 2017 Oct; 158():689-696. PubMed ID: 28778052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surfactant type on surfactant--protein interactions at the air-water interface.
    Gunning PA; Mackie AR; Gunning AP; Woodward NC; Wilde PJ; Morris VJ
    Biomacromolecules; 2004; 5(3):984-91. PubMed ID: 15132691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of polysorbate 80 and HPβCD at the air-water interface of IgG solutions.
    Serno T; Härtl E; Besheer A; Miller R; Winter G
    Pharm Res; 2013 Jan; 30(1):117-30. PubMed ID: 22910890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive adsorption: a physical model for lung surfactant inactivation.
    Fernsler JG; Zasadzinski JA
    Langmuir; 2009 Jul; 25(14):8131-43. PubMed ID: 19534502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscopic and Microscopic Properties of Some Surfactants and Biosurfactants.
    Zdziennicka A; Krawczyk J; Szymczyk K; Jańczuk B
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29966385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.