These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
713 related articles for article (PubMed ID: 32915544)
1. Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells. Xu W; Zhu T; Wu H; Liu L; Gong X ACS Appl Mater Interfaces; 2020 Oct; 12(40):45045-45055. PubMed ID: 32915544 [TBL] [Abstract][Full Text] [Related]
2. Novel Quasi-2D Perovskites for Stable and Efficient Perovskite Solar Cells. Zhu T; Yang Y; Gu K; Liu C; Zheng J; Gong X ACS Appl Mater Interfaces; 2020 Nov; 12(46):51744-51755. PubMed ID: 33146999 [TBL] [Abstract][Full Text] [Related]
3. Efficient and Stable Perovskite Solar Cells by B-Site Compositional Engineered All-Inorganic Perovskites and Interface Passivation. Shen L; Yang Y; Zhu T; Liu L; Zheng J; Gong X ACS Appl Mater Interfaces; 2022 May; 14(17):19469-19479. PubMed ID: 35465651 [TBL] [Abstract][Full Text] [Related]
4. Decreased surface defects and non-radiative recombination Kara DA; Cirak D; Gultekin B Phys Chem Chem Phys; 2022 May; 24(17):10384-10393. PubMed ID: 35438697 [TBL] [Abstract][Full Text] [Related]
5. Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells. Yang L; Li Y; Wang L; Pei Y; Wang Z; Zhang Y; Lin H; Li X ACS Appl Mater Interfaces; 2020 May; 12(20):22992-23001. PubMed ID: 32343556 [TBL] [Abstract][Full Text] [Related]
6. Pyridalthiadiazole-Based Molecular Chromophores for Defect Passivation Enables High-Performance Perovskite Solar Cells. Min Z; Wang B; Kong Y; Guo J; Ling X; Ma W; Yuan J ChemSusChem; 2024 Sep; ():e202401852. PubMed ID: 39345007 [TBL] [Abstract][Full Text] [Related]
7. Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. Zhu T; Yang Y; Yao X; Huang Z; Liu L; Hu W; Gong X ACS Appl Mater Interfaces; 2020 Apr; 12(13):15456-15463. PubMed ID: 32154700 [TBL] [Abstract][Full Text] [Related]
8. Improved Performance of Planar Perovskite Solar Cells Using an Amino-Terminated Multifunctional Fullerene Derivative as the Passivation Layer. Chen Q; Wang W; Xiao S; Cheng YB; Huang F; Xiang W ACS Appl Mater Interfaces; 2019 Jul; 11(30):27145-27152. PubMed ID: 31282640 [TBL] [Abstract][Full Text] [Related]
9. Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells. Gu X; Xiang W; Tian Q; Liu SF Angew Chem Int Ed Engl; 2021 Oct; 60(43):23164-23170. PubMed ID: 34405503 [TBL] [Abstract][Full Text] [Related]
10. Bulk Heterojunction Perovskite Solar Cells Incorporated with Zn Xu W; Zheng L; Zhu T; Liu L; Gong X ACS Appl Mater Interfaces; 2019 Sep; 11(37):34020-34029. PubMed ID: 31432659 [TBL] [Abstract][Full Text] [Related]
11. Facile Formation of 2D-3D Heterojunctions on Perovskite Thin Film Surfaces for Efficient Solar Cells. He Q; Worku M; Xu L; Zhou C; Lin H; Robb AJ; Hanson K; Xin Y; Ma B ACS Appl Mater Interfaces; 2020 Jan; 12(1):1159-1168. PubMed ID: 31825589 [TBL] [Abstract][Full Text] [Related]
12. Efficient and Stable Perovskite Solar Cell Achieved with Bifunctional Interfacial Layers. Hou F; Shi B; Li T; Xin C; Ding Y; Wei C; Wang G; Li Y; Zhao Y; Zhang X ACS Appl Mater Interfaces; 2019 Jul; 11(28):25218-25226. PubMed ID: 31264840 [TBL] [Abstract][Full Text] [Related]
13. A surface modifier enhances the performance of the all-inorganic CsPbI Wang K; Zhou J; Li X; Ahmad N; Xia H; Wu G; Zhang X; Wang B; Zhang D; Zou Y; Zhou H; Zhang Y Phys Chem Chem Phys; 2020 Aug; 22(32):17847-17856. PubMed ID: 32760997 [TBL] [Abstract][Full Text] [Related]
14. Bifunctional Ultrathin PCBM Enables Passivated Trap States and Cascaded Energy Level toward Efficient Inverted Perovskite Solar Cells. Li D; Kong W; Zhang H; Wang D; Li W; Liu C; Chen H; Song W; Gao F; Amini A; Xu B; Li S; Cheng C ACS Appl Mater Interfaces; 2020 Apr; 12(17):20103-20109. PubMed ID: 32252523 [TBL] [Abstract][Full Text] [Related]
15. Two-Dimensional Metal Halide Perovskites Created by Binary Conjugated Organic Cations for High-Performance Perovskite Photovoltaics. Shen L; Wu H; Cao Z; Zhang X; Liu L; Sawwan H; Zhu T; Zheng J; Wang H; Gong X ACS Appl Mater Interfaces; 2024 Apr; 16(15):19318-19329. PubMed ID: 38577894 [TBL] [Abstract][Full Text] [Related]
16. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport. Xiao K; Cui C; Wang P; Lin P; Qiang Y; Xu L; Xie J; Yang Z; Zhu X; Yu X; Yang D Nanotechnology; 2018 Feb; 29(6):065401. PubMed ID: 29219844 [TBL] [Abstract][Full Text] [Related]
17. Thiocyanate-Passivated Diaminonaphthalene-Incorporated Dion-Jacobson Perovskite for Highly Efficient and Stable Solar Cells. Yukta ; Chavan RD; Prochowicz D; Yadav P; Tavakoli MM; Satapathi S ACS Appl Mater Interfaces; 2022 Jan; 14(1):850-860. PubMed ID: 34978806 [TBL] [Abstract][Full Text] [Related]
18. 3 D NiO Nanowall Hole-Transporting Layer for the Passivation of Interfacial Contact in Inverted Perovskite Solar Cells. Yin X; Zhai J; Du P; Li N; Song L; Xiong J; Ko F ChemSusChem; 2020 Mar; 13(5):1006-1012. PubMed ID: 31898849 [TBL] [Abstract][Full Text] [Related]
19. Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Wei M; Xiao K; Walters G; Lin R; Zhao Y; Saidaminov MI; Todorović P; Johnston A; Huang Z; Chen H; Li A; Zhu J; Yang Z; Wang YK; Proppe AH; Kelley SO; Hou Y; Voznyy O; Tan H; Sargent EH Adv Mater; 2020 Mar; 32(12):e1907058. PubMed ID: 32030824 [TBL] [Abstract][Full Text] [Related]
20. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. Xin D; Tie S; Yuan R; Zheng X; Zhu J; Zhang WH ACS Appl Mater Interfaces; 2019 Nov; 11(47):44233-44240. PubMed ID: 31696708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]