These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 32915612)
1. Microscale Marangoni Surfers. Dietrich K; Jaensson N; Buttinoni I; Volpe G; Isa L Phys Rev Lett; 2020 Aug; 125(9):098001. PubMed ID: 32915612 [TBL] [Abstract][Full Text] [Related]
2. Menthyl acetate powered self-propelled Janus sponge Marangoni motors with self-maintaining surface tension gradients and active mixing. Archer RJ; Ebbens SJ; Kubodera Y; Matsuo M; Nomura SM J Colloid Interface Sci; 2025 Jan; 678(Pt B):11-19. PubMed ID: 39236350 [TBL] [Abstract][Full Text] [Related]
3. Controllable internal mixing in coalescing droplets induced by the solutal Marangoni convection of surfactants with distinct headgroup architectures. Nash JJ; Spicer PT; Erk KA J Colloid Interface Sci; 2018 Nov; 529():224-233. PubMed ID: 29902660 [TBL] [Abstract][Full Text] [Related]
4. Thermal Marangoni trapping driven by laser absorption in evaporating droplets for particle deposition. Goy NA; Bruni N; Girot A; Delville JP; Delabre U Soft Matter; 2022 Oct; 18(41):7949-7958. PubMed ID: 36226682 [TBL] [Abstract][Full Text] [Related]
5. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats. Ender H; Kierfeld J Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288 [TBL] [Abstract][Full Text] [Related]
6. Two-dimensional numerical model of Marangoni surfers: From single swimmer to crystallization. Gouiller C; Ybert C; Cottin-Bizonne C; Raynal F; Bourgoin M; Volk R Phys Rev E; 2021 Dec; 104(6-1):064608. PubMed ID: 35030840 [TBL] [Abstract][Full Text] [Related]
7. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces. Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844 [TBL] [Abstract][Full Text] [Related]
8. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers. Rongy L; Assemat P; De Wit A Chaos; 2012 Sep; 22(3):037106. PubMed ID: 23020497 [TBL] [Abstract][Full Text] [Related]
9. Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters. Namura K; Nakajima K; Suzuki M Nanotechnology; 2018 Feb; 29(6):065201. PubMed ID: 29251265 [TBL] [Abstract][Full Text] [Related]
10. Study of Active Janus Particles in the Presence of an Engineered Oil-Water Interface. Sharan P; Postek W; Gemming T; Garstecki P; Simmchen J Langmuir; 2021 Jan; 37(1):204-210. PubMed ID: 33373252 [TBL] [Abstract][Full Text] [Related]
11. Transient Marangoni transport of colloidal particles at the liquid/liquid interface caused by surfactant convective-diffusion under radial flow. Dunér G; Garoff S; Przybycien TM; Tilton RD J Colloid Interface Sci; 2016 Jan; 462():75-87. PubMed ID: 26433480 [TBL] [Abstract][Full Text] [Related]
12. Generation of Fermat's spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system. Xiao Y; Ribe NM; Zhang Y; Pan Y; Cao Y; Shum HC Nat Commun; 2022 Nov; 13(1):7206. PubMed ID: 36418301 [TBL] [Abstract][Full Text] [Related]
13. Actuation of Janus Emulsion Droplets via Optothermally Induced Marangoni Forces. Nagelberg S; Totz JF; Mittasch M; Sresht V; Zeininger L; Swager TM; Kreysing M; Kolle M Phys Rev Lett; 2021 Oct; 127(14):144503. PubMed ID: 34652186 [TBL] [Abstract][Full Text] [Related]
14. Influence of surfactants in forced dynamic dewetting. Henrich F; Fell D; Truszkowska D; Weirich M; Anyfantakis M; Nguyen TH; Wagner M; Auernhammer GK; Butt HJ Soft Matter; 2016 Sep; 12(37):7782-7791. PubMed ID: 27722740 [TBL] [Abstract][Full Text] [Related]
15. Untethered soft magnetic pump for microfluidics-based Marangoni surfer. Lin YH; Piñan Basualdo FN; Kalpathy Venkiteswaran V; Misra S Sci Rep; 2024 Aug; 14(1):20280. PubMed ID: 39217167 [TBL] [Abstract][Full Text] [Related]
16. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Jiang HR; Yoshinaga N; Sano M Phys Rev Lett; 2010 Dec; 105(26):268302. PubMed ID: 21231718 [TBL] [Abstract][Full Text] [Related]
17. Effective Interactions between Chemically Active Colloids and Interfaces. Popescu MN; Uspal WE; Domínguez A; Dietrich S Acc Chem Res; 2018 Dec; 51(12):2991-2997. PubMed ID: 30403132 [TBL] [Abstract][Full Text] [Related]
18. Hydrophobic Janus Foam Motors: Self-Propulsion and On-The-Fly Oil Absorption. Li X; Mou F; Guo J; Deng Z; Chen C; Xu L; Luo M; Guan J Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393299 [TBL] [Abstract][Full Text] [Related]
19. Self-Induced Surfactant Transport along Discontinuous Liquid-Liquid Interfaces. Sinz DK; Hanyak M; Darhuber AA J Phys Chem Lett; 2013 Mar; 4(6):1039-43. PubMed ID: 26291374 [TBL] [Abstract][Full Text] [Related]
20. Control of solutal Marangoni-driven vortical flows and enhancement of mixing efficiency. Park J; Ryu J; Sung HJ; Kim H J Colloid Interface Sci; 2020 Mar; 561():408-415. PubMed ID: 31733837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]