BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32915730)

  • 1. Optimization of MRI Gradient Coils With Explicit Peripheral Nerve Stimulation Constraints.
    Davids M; Guerin B; Klein V; Wald LL
    IEEE Trans Med Imaging; 2021 Jan; 40(1):129-142. PubMed ID: 32915730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral nerve stimulation informed design of a high-performance asymmetric head gradient coil.
    Davids M; Dietz P; Ruyters G; Roesler M; Klein V; Guérin B; Feinberg DA; Wald LL
    Magn Reson Med; 2023 Aug; 90(2):784-801. PubMed ID: 37052387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations.
    Davids M; Guérin B; Vom Endt A; Schad LR; Wald LL
    Magn Reson Med; 2019 Jan; 81(1):686-701. PubMed ID: 30094874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimizing electric fields and increasing peripheral nerve stimulation thresholds using a body gradient array coil.
    Babaloo R; Atalar E
    Magn Reson Med; 2024 Sep; 92(3):1290-1305. PubMed ID: 38624032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging.
    Tan ET; Hua Y; Fiveland EW; Vermilyea ME; Piel JE; Park KJ; Ho VB; Foo TKF
    Magn Reson Med; 2020 Jan; 83(1):352-366. PubMed ID: 31385628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Huygens' surface approach to rapid characterization of peripheral nerve stimulation.
    Davids M; Guerin B; Wald LL
    Magn Reson Med; 2022 Jan; 87(1):377-393. PubMed ID: 34427346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of a PNS-optimized whole-body gradient coil.
    Davids M; Vendramini L; Klein V; Ferris N; Guerin B; Wald LL
    Magn Reson Med; 2024 May; ():. PubMed ID: 38767407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral nerve stimulation characteristics of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array.
    Lee SK; Mathieu JB; Graziani D; Piel J; Budesheim E; Fiveland E; Hardy CJ; Tan ET; Amm B; Foo TK; Bernstein MA; Huston J; Shu Y; Schenck JF
    Magn Reson Med; 2016 Dec; 76(6):1939-1950. PubMed ID: 26628078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field calculation and peripheral nerve stimulation prediction for head and body gradient coils.
    Roemer PB; Wade T; Alejski A; McKenzie CA; Rutt BK
    Magn Reson Med; 2021 Oct; 86(4):2301-2315. PubMed ID: 34080744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metric.
    Davids M; Guérin B; Klein V; Schmelz M; Schad LR; Wald LL
    J Neural Eng; 2020 Jan; 17(1):016029. PubMed ID: 31665707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis of neurodynamic and electromagnetic simulation parameters for robust prediction of peripheral nerve stimulation.
    Klein V; Davids M; Wald LL; Schad LR; Guérin B
    Phys Med Biol; 2018 Dec; 64(1):015005. PubMed ID: 30523884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models.
    Davids M; Guérin B; Malzacher M; Schad LR; Wald LL
    Sci Rep; 2017 Jul; 7(1):5316. PubMed ID: 28706244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimum electric-field gradient coil design: Theoretical limits and practical guidelines.
    Roemer PB; Rutt BK
    Magn Reson Med; 2021 Jul; 86(1):569-580. PubMed ID: 33565135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coil array method for creating a dynamic imaging volume.
    Smith E; Freschi F; Repetto M; Crozier S
    Magn Reson Med; 2017 Aug; 78(2):784-793. PubMed ID: 27605037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of peripheral axon geometry and local anatomy on magnetostimulation chronaxie.
    Ferris NG; Klein V; Guerin B; Wald LL; Davids M
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38806036
    [No Abstract]   [Full Text] [Related]  

  • 16. Unconventional gradient coil designs in magnetic resonance imaging.
    Zhu M; Xia L; Liu F
    Crit Rev Biomed Eng; 2014; 42(6):493-526. PubMed ID: 25955713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety.
    Recoskie BJ; Scholl TJ; Chronik BA
    Phys Med Biol; 2009 Oct; 54(19):5965-79. PubMed ID: 19759411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing PNS with minimal performance penalties via simple pulse sequence modifications on a high-performance compact 3T scanner.
    In MH; Shu Y; Trzasko JD; Yarach U; Kang D; Gray EM; Huston J; Bernstein MA
    Phys Med Biol; 2020 Jul; 65(15):15NT02. PubMed ID: 32503007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI.
    Liu F; Zhao H; Crozier S
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):804-15. PubMed ID: 12848348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magneto-stimulation limits in medical imaging applications with rapid field dynamics.
    Grau-Ruiz D; Rigla JP; Pallás E; Algarín JM; Borreguero J; Bosch R; López-Comazzi G; Galve F; Díaz-Caballero E; Gramage C; González JM; Pellicer R; Ríos A; Benlloch JM; Alonso J
    Phys Med Biol; 2022 Feb; 67(4):. PubMed ID: 35108685
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.