These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32915759)

  • 1. Navigation of Three Cooperative Object-Transportation Robots Using a Multistage Evolutionary Fuzzy Control Approach.
    Juang CF; Lu CH; Huang CA
    IEEE Trans Cybern; 2022 May; 52(5):3606-3619. PubMed ID: 32915759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.
    Juang CF; Lai MG; Zeng WT
    IEEE Trans Cybern; 2015 Sep; 45(9):1731-43. PubMed ID: 25398185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Navigation of a Fuzzy-Controlled Wheeled Robot Through the Combination of Expert Knowledge and Data-Driven Multiobjective Evolutionary Learning.
    Juang CF; Chou CY; Lin CT
    IEEE Trans Cybern; 2022 Aug; 52(8):7388-7401. PubMed ID: 33400665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiobjective Rule-Based Cooperative Continuous Ant Colony Optimized Fuzzy Systems With a Robot Control Application.
    Juang CF; Lin CH; Bui TB
    IEEE Trans Cybern; 2020 Feb; 50(2):650-663. PubMed ID: 30296249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning.
    Samadi Gharajeh M; Jond HB
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interval Type-2 Neural Fuzzy Controller-Based Navigation of Cooperative Load-Carrying Mobile Robots in Unknown Environments.
    Lin CH; Wang SH; Lin CJ
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30487466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collaborative Multi-Robot Transportation in Obstacle-Cluttered Environments via Implicit Communication.
    Bechlioulis CP; Kyriakopoulos KJ
    Front Robot AI; 2018; 5():90. PubMed ID: 33500969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DCP-SLAM: Distributed Collaborative Partial Swarm SLAM for Efficient Navigation of Autonomous Robots.
    Mahboob H; Yasin JN; Jokinen S; Haghbayan MH; Plosila J; Yasin MM
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bearing-based localization for leader-follower formation control.
    Han Q; Ren S; Lang H; Zhang C
    PLoS One; 2017; 12(4):e0175378. PubMed ID: 28426706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fuzzy-based self organizing aggregation method for swarm robots.
    Mısır O; Gökrem L; Serhat Can M
    Biosystems; 2020 Oct; 196():104187. PubMed ID: 32599012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fuzzy Analytic Hierarchy Process and Cooperative Game Theory Combined Multiple Mobile Robot Navigation Algorithm.
    Kim C; Won JS
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot navigation in cluttered 3-D environments using preference-based fuzzy behaviors.
    Shi D; Collins EG; Dunlap D
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1486-99. PubMed ID: 18179068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots.
    Yoo JK; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):125-39. PubMed ID: 21878418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.
    Dai Y; Kim Y; Wee S; Lee D; Lee S
    ISA Trans; 2015 May; 56():123-34. PubMed ID: 25497595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LF-ACO: an effective formation path planning for multi-mobile robot.
    Yang L; Fu L; Li P; Mao J; Guo N; Du L
    Math Biosci Eng; 2022 Jan; 19(1):225-252. PubMed ID: 34902989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface.
    Rosas-Cervantes VA; Hoang QD; Lee SG; Choi JH
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control.
    Dai Y; Kim Y; Wee S; Lee D; Lee S
    ISA Trans; 2016 Jan; 60():321-332. PubMed ID: 26704719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation.
    Yang X; Moallem M; Patel RV
    IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1214-24. PubMed ID: 16366247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural network output feedback control of robot formations.
    Dierks T; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):383-99. PubMed ID: 19661005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leader-follower formation control based on non-inertial frames for non-holonomic mobile robots.
    Velasco-Villa M; Rodriguez-Angeles A; Maruri-López IZ; Báez-Hernández JA; Cruz Morales RD
    PLoS One; 2024; 19(1):e0297061. PubMed ID: 38285702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.