These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Wu Y; Broadaway KA; Raulerson CK; Scott LJ; Pan C; Ko A; He A; Tilford C; Fuchsberger C; Locke AE; Stringham HM; Jackson AU; Narisu N; Kuusisto J; Pajukanta P; Collins FS; Boehnke M; Laakso M; Lusis AJ; Civelek M; Mohlke KL Hum Mol Genet; 2019 Dec; 28(24):4161-4172. PubMed ID: 31691812 [TBL] [Abstract][Full Text] [Related]
3. Subcutaneous adipose tissue splice quantitative trait loci reveal differences in isoform usage associated with cardiometabolic traits. Brotman SM; Raulerson CK; Vadlamudi S; Currin KW; Shen Q; Parsons VA; Iyengar AK; Roman TS; Furey TS; Kuusisto J; Collins FS; Boehnke M; Laakso M; Pajukanta P; Mohlke KL Am J Hum Genet; 2022 Jan; 109(1):66-80. PubMed ID: 34995504 [TBL] [Abstract][Full Text] [Related]
4. A cross-ancestry genome-wide meta-analysis, fine-mapping, and gene prioritization approach to characterize the genetic architecture of adiponectin. Sarsani V; Brotman SM; Xianyong Y; Fernandes Silva L; Laakso M; Spracklen CN HGG Adv; 2024 Jan; 5(1):100252. PubMed ID: 37859345 [TBL] [Abstract][Full Text] [Related]
5. A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Chung CM; Lin TH; Chen JW; Leu HB; Yang HC; Ho HY; Ting CT; Sheu SH; Tsai WC; Chen JH; Lin SJ; Chen YT; Pan WH Diabetes; 2011 Sep; 60(9):2417-23. PubMed ID: 21771975 [TBL] [Abstract][Full Text] [Related]
6. Cannon ME; Duan Q; Wu Y; Zeynalzadeh M; Xu Z; Kangas AJ; Soininen P; Ala-Korpela M; Civelek M; Lusis AJ; Kuusisto J; Collins FS; Boehnke M; Tang H; Laakso M; Li Y; Mohlke KL G3 (Bethesda); 2017 Sep; 7(9):3217-3227. PubMed ID: 28754724 [TBL] [Abstract][Full Text] [Related]
7. Association of CDH13 genotypes/haplotypes with circulating adiponectin levels, metabolic syndrome, and related metabolic phenotypes: the role of the suppression effect. Teng MS; Hsu LA; Wu S; Sun YC; Juan SH; Ko YL PLoS One; 2015; 10(4):e0122664. PubMed ID: 25875811 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide association study for adiponectin levels in Filipino women identifies CDH13 and a novel uncommon haplotype at KNG1-ADIPOQ. Wu Y; Li Y; Lange EM; Croteau-Chonka DC; Kuzawa CW; McDade TW; Qin L; Curocichin G; Borja JB; Lange LA; Adair LS; Mohlke KL Hum Mol Genet; 2010 Dec; 19(24):4955-64. PubMed ID: 20876611 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Association Study on Adiponectin-Mediated Suppression of HDL-C Levels in Taiwanese Individuals Identifies Functional Haplotypes in Er LK; Wu S; Cheng T; Ko YL; Teng MS Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34680977 [No Abstract] [Full Text] [Related]
11. Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol. Roman TS; Marvelle AF; Fogarty MP; Vadlamudi S; Gonzalez AJ; Buchkovich ML; Huyghe JR; Fuchsberger C; Jackson AU; Wu Y; Civelek M; Lusis AJ; Gaulton KJ; Sethupathy P; Kangas AJ; Soininen P; Ala-Korpela M; Kuusisto J; Collins FS; Laakso M; Boehnke M; Mohlke KL Am J Hum Genet; 2015 Dec; 97(6):801-15. PubMed ID: 26637976 [TBL] [Abstract][Full Text] [Related]
13. Adiponectin and adiponectin receptor gene variants in relation to resting metabolic rate, respiratory quotient, and adiposity-related phenotypes in the Quebec Family Study. Loos RJ; Ruchat S; Rankinen T; Tremblay A; Pérusse L; Bouchard C Am J Clin Nutr; 2007 Jan; 85(1):26-34. PubMed ID: 17209173 [TBL] [Abstract][Full Text] [Related]
14. A comprehensive investigation of variants in genes encoding adiponectin (ADIPOQ) and its receptors (ADIPOR1/R2), and their association with serum adiponectin, type 2 diabetes, insulin resistance and the metabolic syndrome. Peters KE; Beilby J; Cadby G; Warrington NM; Bruce DG; Davis WA; Davis TM; Wiltshire S; Knuiman M; McQuillan BM; Palmer LJ; Thompson PL; Hung J BMC Med Genet; 2013 Jan; 14():15. PubMed ID: 23351195 [TBL] [Abstract][Full Text] [Related]
15. Chromatin accessibility and gene expression during adipocyte differentiation identify context-dependent effects at cardiometabolic GWAS loci. Perrin HJ; Currin KW; Vadlamudi S; Pandey GK; Ng KK; Wabitsch M; Laakso M; Love MI; Mohlke KL PLoS Genet; 2021 Oct; 17(10):e1009865. PubMed ID: 34699533 [TBL] [Abstract][Full Text] [Related]
16. Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits. Raulerson CK; Ko A; Kidd JC; Currin KW; Brotman SM; Cannon ME; Wu Y; Spracklen CN; Jackson AU; Stringham HM; Welch RP; Fuchsberger C; Locke AE; Narisu N; Lusis AJ; Civelek M; Furey TS; Kuusisto J; Collins FS; Boehnke M; Scott LJ; Lin DY; Love MI; Laakso M; Pajukanta P; Mohlke KL Am J Hum Genet; 2019 Oct; 105(4):773-787. PubMed ID: 31564431 [TBL] [Abstract][Full Text] [Related]
17. Multifaceted genome-wide study identifies novel regulatory loci in SLC22A11 and ZNF45 for body mass index in Indians. Giri AK; Prasad G; Bandesh K; Parekatt V; Mahajan A; Banerjee P; Kauser Y; Chakraborty S; Rajashekar D; ; Sharma A; Mathur SK; Basu A; McCarthy MI; Tandon N; Bharadwaj D Mol Genet Genomics; 2020 Jul; 295(4):1013-1026. PubMed ID: 32363570 [TBL] [Abstract][Full Text] [Related]
18. Revealing the Strong Functional Association of adipor2 and cdh13 with adipoq: A Gene Network Study. Bag S; Anbarasu A Cell Biochem Biophys; 2015 Apr; 71(3):1445-56. PubMed ID: 25388841 [TBL] [Abstract][Full Text] [Related]
19. Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. Horikoshi M; Mӓgi R; van de Bunt M; Surakka I; Sarin AP; Mahajan A; Marullo L; Thorleifsson G; Hӓgg S; Hottenga JJ; Ladenvall C; Ried JS; Winkler TW; Willems SM; Pervjakova N; Esko T; Beekman M; Nelson CP; Willenborg C; Wiltshire S; Ferreira T; Fernandez J; Gaulton KJ; Steinthorsdottir V; Hamsten A; Magnusson PK; Willemsen G; Milaneschi Y; Robertson NR; Groves CJ; Bennett AJ; Lehtimӓki T; Viikari JS; Rung J; Lyssenko V; Perola M; Heid IM; Herder C; Grallert H; Müller-Nurasyid M; Roden M; Hypponen E; Isaacs A; van Leeuwen EM; Karssen LC; Mihailov E; Houwing-Duistermaat JJ; de Craen AJ; Deelen J; Havulinna AS; Blades M; Hengstenberg C; Erdmann J; Schunkert H; Kaprio J; Tobin MD; Samani NJ; Lind L; Salomaa V; Lindgren CM; Slagboom PE; Metspalu A; van Duijn CM; Eriksson JG; Peters A; Gieger C; Jula A; Groop L; Raitakari OT; Power C; Penninx BW; de Geus E; Smit JH; Boomsma DI; Pedersen NL; Ingelsson E; Thorsteinsdottir U; Stefansson K; Ripatti S; Prokopenko I; McCarthy MI; Morris AP; PLoS Genet; 2015 Jul; 11(7):e1005230. PubMed ID: 26132169 [TBL] [Abstract][Full Text] [Related]