BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32915841)

  • 1. Shoulder girdle formation and positioning during embryonic and early fetal human development.
    Tanaka S; Sakamoto R; Kanahashi T; Yamada S; Imai H; Yoneyama A; Takakuwa T
    PLoS One; 2020; 15(9):e0238225. PubMed ID: 32915841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper arm posture during human embryonic and fetal development.
    Kumano Y; Tanaka S; Sakamoto R; Kanahashi T; Imai H; Yoneyama A; Yamada S; Takakuwa T
    Anat Rec (Hoboken); 2022 Jul; 305(7):1682-1691. PubMed ID: 34605199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional alignment changes of the shoulder girdle between the supine and standing positions.
    Matsumura N; Yamada Y; Oki S; Yoshida Y; Yokoyama Y; Yamada M; Nagura T; Jinzaki M
    J Orthop Surg Res; 2020 Sep; 15(1):411. PubMed ID: 32933527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying changes in shoulder orientation between the prone and supine positions from magnetic resonance imaging.
    Pan F; Khoo K; Maso Talou GD; Song F; McGhee D; Doyle AJ; Nielsen PMF; Nash MP; Babarenda Gamage TP
    Clin Biomech (Bristol, Avon); 2024 Jan; 111():106157. PubMed ID: 38103526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shoulder Bone Geometry Affects the Active and Passive Axial Rotational Range of the Glenohumeral Joint.
    Humphries A; Cirovic S; Shaheen AF
    Am J Sports Med; 2017 Nov; 45(13):3010-3019. PubMed ID: 28777666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional regression model of the shoulder rhythm.
    de Groot JH; Brand R
    Clin Biomech (Bristol, Avon); 2001 Nov; 16(9):735-43. PubMed ID: 11714550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics of the Shoulder Girdle During Pointing: Coordination Between Joints and their Contribution to the Peri-Personal Workspace.
    Roby-Brami A; Robertson JV; Roren A; Lefèvre-Colau MM
    Motor Control; 2017 Apr; 21(2):168-194. PubMed ID: 27111914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of the unique morphology of the shoulder girdle in turtles.
    Nagashima H; Hirasawa T; Sugahara F; Takechi M; Usuda R; Sato N; Kuratani S
    J Anat; 2013 Dec; 223(6):547-56. PubMed ID: 24117338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics of chiropteran shoulder girdle in flight.
    Panyutina AA; Kuznetsov AN; Korzun LP
    Anat Rec (Hoboken); 2013 Mar; 296(3):382-94. PubMed ID: 23381941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo kinematic analysis of the glenohumeral joint during dynamic full axial rotation and scapular plane full abduction in healthy shoulders.
    Kozono N; Okada T; Takeuchi N; Hamai S; Higaki H; Ikebe S; Shimoto T; Miake G; Nakanishi Y; Iwamoto Y
    Knee Surg Sports Traumatol Arthrosc; 2017 Jul; 25(7):2032-2040. PubMed ID: 27511218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional anatomy of the shoulder complex.
    Culham E; Peat M
    J Orthop Sports Phys Ther; 1993 Jul; 18(1):342-50. PubMed ID: 8348135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the kinematic modelling and the parameter estimation of the human shoulder.
    Bao H; Willems PY
    J Biomech; 1999 Sep; 32(9):943-50. PubMed ID: 10460131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fracture diagnosis: upper extremities : Shoulder and shoulder girdle].
    von Falck C; Hawi N
    Radiologe; 2020 Jun; 60(6):541-548. PubMed ID: 32333035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional recording and description of motions of the shoulder mechanism.
    van der Helm FC; Pronk GM
    J Biomech Eng; 1995 Feb; 117(1):27-40. PubMed ID: 7609482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sensitivity of shoulder muscle and joint force predictions to changes in joint kinematics: A Monte-Carlo analysis.
    Wu W; Lee PVS; Ackland DC
    Gait Posture; 2017 May; 54():87-92. PubMed ID: 28279851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of experimental shortening of the clavicle on shoulder kinematics.
    Hillen RJ; Burger BJ; Pöll RG; van Dijk CN; Veeger DH
    Clin Biomech (Bristol, Avon); 2012 Oct; 27(8):777-81. PubMed ID: 22652502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction.
    Yanagawa T; Goodwin CJ; Shelburne KB; Giphart JE; Torry MR; Pandy MG
    J Biomech Eng; 2008 Apr; 130(2):021024. PubMed ID: 18412511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of scapular retraction/protraction position and scapular elevation on shoulder girdle muscle activity during glenohumeral abduction.
    Contemori S; Panichi R; Biscarini A
    Hum Mov Sci; 2019 Apr; 64():55-66. PubMed ID: 30660072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic in vivo glenohumeral kinematics during scapular plane abduction in healthy shoulders.
    Matsuki K; Matsuki KO; Yamaguchi S; Ochiai N; Sasho T; Sugaya H; Toyone T; Wada Y; Takahashi K; Banks SA
    J Orthop Sports Phys Ther; 2012 Feb; 42(2):96-104. PubMed ID: 22030448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the mobility in the cervicothoracic spine and the upper ribs (shoulder girdle) on the mobility of the scapulohumeral joint.
    Sobel JS; Kremer I; Winters JC; Arendzen JH; de Jong BM
    J Manipulative Physiol Ther; 1996 Sep; 19(7):469-74. PubMed ID: 8890028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.