BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32916123)

  • 1. FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair.
    Julien A; Perrin S; Duchamp de Lageneste O; Carvalho C; Bensidhoum M; Legeai-Mallet L; Colnot C
    Stem Cell Reports; 2020 Oct; 15(4):955-967. PubMed ID: 32916123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gain-of-function mutation of FGFR3 results in impaired fracture healing due to inhibition of chondrocyte differentiation.
    Su N; Yang J; Xie Y; Du X; Lu X; Yin Z; Yin L; Qi H; Zhao L; Feng J; Chen L
    Biochem Biophys Res Commun; 2008 Nov; 376(3):454-9. PubMed ID: 18789890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging periosteal progenitor cells have reduced regenerative responsiveness to bone injury and to the anabolic actions of PTH 1-34 treatment.
    Yukata K; Xie C; Li TF; Takahata M; Hoak D; Kondabolu S; Zhang X; Awad HA; Schwarz EM; Beck CA; Jonason JH; O'Keefe RJ
    Bone; 2014 May; 62():79-89. PubMed ID: 24530870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periosteal cells are a major source of soft callus in bone fracture.
    Murao H; Yamamoto K; Matsuda S; Akiyama H
    J Bone Miner Metab; 2013 Jul; 31(4):390-8. PubMed ID: 23475152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PTH 1-34 Ameliorates the Osteopenia and Delayed Healing of Stabilized Tibia Fracture in Mice with Achondroplasia Resulting from Gain-Of-Function Mutation of FGFR3.
    Chen H; Sun X; Yin L; Chen S; Zhu Y; Huang J; Jiang W; Chen B; Zhang R; Chen L; Nie M; Xie Y; Deng Z
    Int J Biol Sci; 2017; 13(10):1254-1265. PubMed ID: 29104492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of fibroblast growth factor receptor-3 (FGFR3), signal transducer and activator of transcription-1, and cyclin-dependent kinase inhibitor p21 during endochondral ossification: differential role of FGFR3 in skeletal development and fracture repair.
    Nakajima A; Shimizu S; Moriya H; Yamazaki M
    Endocrinology; 2003 Oct; 144(10):4659-68. PubMed ID: 12960068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spatiotemporal role of COX-2 in osteogenic and chondrogenic differentiation of periosteum-derived mesenchymal progenitors in fracture repair.
    Huang C; Xue M; Chen H; Jiao J; Herschman HR; O'Keefe RJ; Zhang X
    PLoS One; 2014; 9(7):e100079. PubMed ID: 24988184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periosteum progenitors could stimulate bone regeneration in aged murine bone defect model.
    Xiao H; Wang L; Zhang T; Chen C; Chen H; Li S; Hu J; Lu H
    J Cell Mol Med; 2020 Oct; 24(20):12199-12210. PubMed ID: 32931157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrous periosteum repairs bone fracture and maintains the healed bone throughout mouse adulthood.
    Liu YL; Tang XT; Shu HS; Zou W; Zhou BO
    Dev Cell; 2024 May; 59(9):1192-1209.e6. PubMed ID: 38554700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.
    Colnot C
    J Bone Miner Res; 2009 Feb; 24(2):274-82. PubMed ID: 18847330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells.
    Collette NM; Yee CS; Hum NR; Murugesh DK; Christiansen BA; Xie L; Economides AN; Manilay JO; Robling AG; Loots GG
    Bone; 2016 Jul; 88():20-30. PubMed ID: 27102547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated FGFR3 promotes bone formation via accelerating endochondral ossification in mouse model of distraction osteogenesis.
    Osawa Y; Matsushita M; Hasegawa S; Esaki R; Fujio M; Ohkawara B; Ishiguro N; Ohno K; Kitoh H
    Bone; 2017 Dec; 105():42-49. PubMed ID: 28802681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FGFR3 deficient mice have accelerated fracture repair.
    Xie Y; Luo F; Xu W; Wang Z; Sun X; Xu M; Huang J; Zhang D; Tan Q; Chen B; Jiang W; Du X; Chen L
    Int J Biol Sci; 2017; 13(8):1029-1037. PubMed ID: 28924384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposal of patient-specific growth plate cartilage xenograft model for FGFR3 chondrodysplasia.
    Kimura T; Ozaki T; Fujita K; Yamashita A; Morioka M; Ozono K; Tsumaki N
    Osteoarthritis Cartilage; 2018 Nov; 26(11):1551-1561. PubMed ID: 30086379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing.
    Wang Q; Huang C; Xue M; Zhang X
    Bone; 2011 Mar; 48(3):524-32. PubMed ID: 21056707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin.
    Duchamp de Lageneste O; Julien A; Abou-Khalil R; Frangi G; Carvalho C; Cagnard N; Cordier C; Conway SJ; Colnot C
    Nat Commun; 2018 Feb; 9(1):773. PubMed ID: 29472541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of tibial fracture healing in normal and Nf1-deficient mice.
    Schindeler A; Morse A; Harry L; Godfrey C; Mikulec K; McDonald M; Gasser JA; Little DG
    J Orthop Res; 2008 Aug; 26(8):1053-60. PubMed ID: 18383150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice.
    Mori Y; Adams D; Hagiwara Y; Yoshida R; Kamimura M; Itoi E; Rowe DW
    J Bone Miner Metab; 2016 Nov; 34(6):606-614. PubMed ID: 26369320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair.
    Yu YY; Lieu S; Lu C; Colnot C
    Bone; 2010 Jul; 47(1):65-73. PubMed ID: 20348041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1
    Xia C; Ge Q; Fang L; Yu H; Zou Z; Zhang P; Lv S; Tong P; Xiao L; Chen D; Wang PE; Jin H
    Cell Prolif; 2020 Nov; 53(11):e12904. PubMed ID: 32997394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.