These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32916457)

  • 21. Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23.
    Ishizawa H; Ogata Y; Hachiya Y; Tokura KI; Kuroda M; Inoue D; Toyama T; Tanaka Y; Mori K; Morikawa M; Ike M
    Chemosphere; 2020 Jan; 238():124682. PubMed ID: 31524619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Indigenous bacteria, an excellent reservoir of functional plant growth promoters for enhancing duckweed biomass yield on site.
    Khairina Y; Jog R; Boonmak C; Toyama T; Oyama T; Morikawa M
    Chemosphere; 2021 Apr; 268():129247. PubMed ID: 33383277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species.
    Paolacci S; Stejskal V; Toner D; Jansen MAK
    Environ Pollut; 2022 Jun; 302():119059. PubMed ID: 35227845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The carbon partitioning of glucose and DIC in mixotrophic, heterotrophic and photoautotrophic cultures of Tetraselmis suecica.
    Penhaul Smith JK; Hughes AD; McEvoy L; Thornton B; Day JG
    Biotechnol Lett; 2021 Mar; 43(3):729-743. PubMed ID: 33459952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving biomass and starch accumulation of bioenergy crop duckweed (Landoltia punctata) by abscisic acid application.
    Liu Y; Chen X; Wang X; Fang Y; Huang M; Guo L; Zhang Y; Zhao H
    Sci Rep; 2018 Jun; 8(1):9544. PubMed ID: 29934519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (Lemna minor L.) in recirculating aquaculture systems.
    Ardiansyah A; Fotedar R
    Lett Appl Microbiol; 2016 Jul; 63(1):53-9. PubMed ID: 27178148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with
    Iatrou EI; Kora E; Stasinakis AS
    Environ Technol; 2019 Aug; 40(20):2649-2656. PubMed ID: 29502496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol.
    Ge X; Zhang N; Phillips GC; Xu J
    Bioresour Technol; 2012 Nov; 124():485-8. PubMed ID: 22985823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production.
    Ma YB; Zhu M; Yu CJ; Wang Y; Liu Y; Li ML; Sun YD; Zhao JS; Zhou GK
    Plant Biol (Stuttg); 2018 Mar; 20(2):357-364. PubMed ID: 29222918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Duckweed biorefinery - Potential to remediate dairy wastewater in integration with microbial protein production.
    Hemalatha M; Venkata Mohan S
    Bioresour Technol; 2022 Feb; 346():126499. PubMed ID: 34883194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growing duckweed in swine wastewater for nutrient recovery and biomass production.
    Xu J; Shen G
    Bioresour Technol; 2011 Jan; 102(2):848-53. PubMed ID: 20869239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].
    Kong W; Wang Y; Yang H; Xi Y; Han R; Niu S
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):299-310. PubMed ID: 26065272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling metabolic alterations in Chlorella vulgaris cultivated on renewable sugars using time resolved multi-omics.
    Arora N; Philippidis GP
    Sci Total Environ; 2021 Dec; 800():149504. PubMed ID: 34426316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater.
    Wang J; Zhou W; Yang H; Wang F; Ruan R
    Bioresour Technol; 2015 Nov; 196():668-76. PubMed ID: 26319944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosynthesis of the starch is improved by the supplement of nickel (Ni
    Shao J; Liu Z; Ding Y; Wang J; Li X; Yang Y
    J Plant Res; 2020 Jul; 133(4):587-596. PubMed ID: 32458160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomass, lipid accumulation kinetics, and the transcriptome of heterotrophic oleaginous microalga Tetradesmus bernardii under different carbon and nitrogen sources.
    Gao B; Wang F; Huang L; Liu H; Zhong Y; Zhang C
    Biotechnol Biofuels; 2021 Jan; 14(1):4. PubMed ID: 33407769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effects of glucose on photosynthesis and growth of Chloralla sp. HN08 cells].
    Lang X; Liu Z; Xu M; Xie L; Li R
    Wei Sheng Wu Xue Bao; 2017 Apr; 57(4):550-9. PubMed ID: 29756738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced biomass production through a repeated sequential auto-and heterotrophic culture mode in Chlorella protothecoides.
    Joun J; Hong ME; Sirohi R; Sim SJ
    Bioresour Technol; 2021 Oct; 338():125532. PubMed ID: 34274588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda.
    Zhao G; Yu J; Jiang F; Zhang X; Tan T
    Bioresour Technol; 2012 Jun; 114():466-71. PubMed ID: 22465580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.