These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32916543)
1. Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging. Zahia S; Garcia-Zapirain B; Saralegui I; Fernandez-Ruanova B Comput Methods Programs Biomed; 2020 Dec; 197():105726. PubMed ID: 32916543 [TBL] [Abstract][Full Text] [Related]
2. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations. Vu H; Kim HC; Jung M; Lee JH Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633 [TBL] [Abstract][Full Text] [Related]
3. Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing. Feng X; Li L; Zhang M; Yang X; Tian M; Xie W; Lu Y; Liu L; Bélanger NN; Meng X; Ding G Cerebellum; 2017 Apr; 16(2):496-507. PubMed ID: 27785760 [TBL] [Abstract][Full Text] [Related]
4. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization. Zhao Y; Ge F; Liu T Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574 [TBL] [Abstract][Full Text] [Related]
5. Neural basis of dyslexia: a comparison between dyslexic and nondyslexic children equated for reading ability. Hoeft F; Hernandez A; McMillon G; Taylor-Hill H; Martindale JL; Meyler A; Keller TA; Siok WT; Deutsch GK; Just MA; Whitfield-Gabrieli S; Gabrieli JD J Neurosci; 2006 Oct; 26(42):10700-8. PubMed ID: 17050709 [TBL] [Abstract][Full Text] [Related]
6. Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Temple E; Poldrack RA; Salidis J; Deutsch GK; Tallal P; Merzenich MM; Gabrieli JD Neuroreport; 2001 Feb; 12(2):299-307. PubMed ID: 11209939 [TBL] [Abstract][Full Text] [Related]
7. Instructional treatment associated with changes in brain activation in children with dyslexia. Aylward EH; Richards TL; Berninger VW; Nagy WE; Field KM; Grimme AC; Richards AL; Thomson JB; Cramer SC Neurology; 2003 Jul; 61(2):212-9. PubMed ID: 12874401 [TBL] [Abstract][Full Text] [Related]
8. Study of functional magnetic resonance imaging (fMRI) in children and adolescents with specific learning disorder (dyslexia). Prasad S; Sagar R; Kumaran SS; Mehta M Asian J Psychiatr; 2020 Apr; 50():101945. PubMed ID: 32086175 [TBL] [Abstract][Full Text] [Related]
9. Reading networks in children with dyslexia compared to children with ocular motility disturbances revealed by fMRI. Saralegui I; Ontañón JM; Fernandez-Ruanova B; Garcia-Zapirain B; Basterra A; Sanz-Arigita EJ Front Hum Neurosci; 2014; 8():936. PubMed ID: 25477808 [TBL] [Abstract][Full Text] [Related]
10. Dyslexia on a continuum: A complex network approach. Edwards ES; Burke K; Booth JR; McNorgan C PLoS One; 2018; 13(12):e0208923. PubMed ID: 30557304 [TBL] [Abstract][Full Text] [Related]
11. Paying attention to reading: the neurobiology of reading and dyslexia. Shaywitz SE; Shaywitz BA Dev Psychopathol; 2008; 20(4):1329-49. PubMed ID: 18838044 [TBL] [Abstract][Full Text] [Related]
12. Neural signatures of phonological deficits in Chinese developmental dyslexia. Cao F; Yan X; Wang Z; Liu Y; Wang J; Spray GJ; Deng Y Neuroimage; 2017 Feb; 146():301-311. PubMed ID: 27890803 [TBL] [Abstract][Full Text] [Related]
13. Disruption of posterior brain systems for reading in children with developmental dyslexia. Shaywitz BA; Shaywitz SE; Pugh KR; Mencl WE; Fulbright RK; Skudlarski P; Constable RT; Marchione KE; Fletcher JM; Lyon GR; Gore JC Biol Psychiatry; 2002 Jul; 52(2):101-10. PubMed ID: 12114001 [TBL] [Abstract][Full Text] [Related]
14. Neural initialization of audiovisual integration in prereaders at varying risk for developmental dyslexia. I Karipidis I; Pleisch G; Röthlisberger M; Hofstetter C; Dornbierer D; Stämpfli P; Brem S Hum Brain Mapp; 2017 Feb; 38(2):1038-1055. PubMed ID: 27739608 [TBL] [Abstract][Full Text] [Related]
15. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex. Olulade OA; Flowers DL; Napoliello EM; Eden GF Neuroimage Clin; 2015; 7():742-54. PubMed ID: 25844326 [TBL] [Abstract][Full Text] [Related]
16. Dyslexic children show short-term memory deficits in phonological storage and serial rehearsal: an fMRI study. Beneventi H; Tønnessen FE; Ersland L Int J Neurosci; 2009; 119(11):2017-43. PubMed ID: 19863259 [TBL] [Abstract][Full Text] [Related]
17. Data-driven exploratory method investigation on the effect of dyslexia education at brain connectivity in Turkish children: a preliminary study. Gengeç Benli Ş; İçer S; Demirci E; Karaman ZF; Ak Z; Acer İ; Sağır GR; Aker E; Sertkaya B Brain Struct Funct; 2024 Sep; 229(7):1697-1712. PubMed ID: 39003410 [TBL] [Abstract][Full Text] [Related]
18. Brain classification reveals the right cerebellum as the best biomarker of dyslexia. Pernet CR; Poline JB; Demonet JF; Rousselet GA BMC Neurosci; 2009 Jun; 10():67. PubMed ID: 19555471 [TBL] [Abstract][Full Text] [Related]
19. The neurological basis of developmental dyslexia: an overview and working hypothesis. Habib M Brain; 2000 Dec; 123 Pt 12():2373-99. PubMed ID: 11099442 [TBL] [Abstract][Full Text] [Related]
20. The development of print tuning in children with dyslexia: evidence from longitudinal ERP data supported by fMRI. Maurer U; Schulz E; Brem S; der Mark Sv; Bucher K; Martin E; Brandeis D Neuroimage; 2011 Aug; 57(3):714-22. PubMed ID: 21040695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]