These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32916587)

  • 1. Influence of recharge rates on steady-state plume lengths.
    Birla S; Yadav PK; Mahalawat P; Händel F; Chahar BR; Liedl R
    J Contam Hydrol; 2020 Nov; 235():103709. PubMed ID: 32916587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites.
    Locatelli L; Binning PJ; Sanchez-Vila X; Søndergaard GL; Rosenberg L; Bjerg PL
    J Contam Hydrol; 2019 Feb; 221():35-49. PubMed ID: 30638639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A data-driven approach for simplifying the estimation of time for contaminant plumes to reach their maximum extent.
    Köhler A; Yadav PK; Liedl R; Shil JB; Grischek T; Dietrich P
    J Contam Hydrol; 2024 Apr; 263():104336. PubMed ID: 38552336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of confined aquifer response to recharge variations and water inflow distributions using analytical approach.
    Zarif Sanayei HR; Javdanian H; Rakhshandehroo GR
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):50878-50889. PubMed ID: 33973116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contamination Transport in the Coastal Unconfined Aquifer under the Influences of Seawater Intrusion and Inland Freshwater Recharge-Laboratory Experiments and Numerical Simulations.
    Guo Q; Zhao Y; Hu Z; Li M
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33477433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Analytical Method for Assessing Recharge Using Groundwater Travel Time in Dupuit-Forchheimer Aquifers.
    Chesnaux R; Santoni S; Garel E; Huneau F
    Ground Water; 2018 Nov; 56(6):986-992. PubMed ID: 29732535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.
    Zlotnik VA; Kacimov A; Al-Maktoumi A
    Ground Water; 2017 Nov; 55(6):797-810. PubMed ID: 28464226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights From a Multi-Method Recharge Estimation Comparison Study.
    Walker D; Parkin G; Schmitter P; Gowing J; Tilahun SA; Haile AT; Yimam AY
    Ground Water; 2019 Mar; 57(2):245-258. PubMed ID: 29896911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient Recharge Estimability Through Field-Scale Groundwater Model Calibration.
    Knowling MJ; Werner AD
    Ground Water; 2017 Nov; 55(6):827-840. PubMed ID: 28498485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainty estimation in one-dimensional heat transport model for heterogeneous porous medium.
    Chang CM; Yeh HD
    Ground Water; 2014; 52(3):326-31. PubMed ID: 23803142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain).
    Hornero J; Manzano M; Ortega L; Custodio E
    Sci Total Environ; 2016 Oct; 568():415-432. PubMed ID: 27310533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan.
    Ni CF; Li WC; Hsu SM; Lee IH; Lin CP
    Environ Monit Assess; 2019 Jan; 191(2):83. PubMed ID: 30659403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume.
    Rubin H; Buddemeier RW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Nov; 37(10):1813-39. PubMed ID: 12413211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic evaluation of mixing-controlled steady-state plume lengths in two-dimensional heterogeneous domains.
    Cirpka OA; Rolle M; Chiogna G; de Barros FP; Nowak W
    J Contam Hydrol; 2012 Sep; 138-139():22-39. PubMed ID: 22796625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.
    Monirul Islam M; Kanungoe P
    Water Sci Technol; 2005; 52(12):251-8. PubMed ID: 16477993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-component transport and transformation in deep confined aquifer during groundwater artificial recharge.
    Zhang W; Huan Y; Yu X; Liu D; Zhou J
    J Environ Manage; 2015 Apr; 152():109-19. PubMed ID: 25617875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly parameterized inversion of groundwater reactive transport for a complex field site.
    Carniato L; Schoups G; van de Giesen N; Seuntjens P; Bastiaens L; Sapion H
    J Contam Hydrol; 2015 Feb; 173():38-58. PubMed ID: 25528244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiparameter daily time-series analysis to groundwater recharge assessment in a caldera aquifer: Roccamonfina Volcano, Italy.
    Viaroli S; Di Curzio D; Lepore D; Mazza R
    Sci Total Environ; 2019 Aug; 676():501-513. PubMed ID: 31051360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Remediation of a Heterogeneous Aquifer: A Case Study.
    Moreno Z; Paster A
    Ground Water; 2017 May; 55(3):428-439. PubMed ID: 28052325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.