These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 32916675)
41. Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features. Aellen FM; Göktepe-Kavis P; Apostolopoulos S; Tzovara A J Neurosci Methods; 2021 Dec; 364():109367. PubMed ID: 34563599 [TBL] [Abstract][Full Text] [Related]
42. Improving EEG-Based Motor Imagery Classification via Spatial and Temporal Recurrent Neural Networks. Ma X; Qiu S; Du C; Xing J; He H Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1903-1906. PubMed ID: 30440769 [TBL] [Abstract][Full Text] [Related]
43. Federated Transfer Learning for EEG Signal Classification. Ju C; Gao D; Mane R; Tan B; Liu Y; Guan C Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3040-3045. PubMed ID: 33018646 [TBL] [Abstract][Full Text] [Related]
44. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines. Lu N; Li T; Ren X; Miao H IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):566-576. PubMed ID: 27542114 [TBL] [Abstract][Full Text] [Related]
45. Imagined character recognition through EEG signals using deep convolutional neural network. Ullah S; Halim Z Med Biol Eng Comput; 2021 May; 59(5):1167-1183. PubMed ID: 33945075 [TBL] [Abstract][Full Text] [Related]
46. CNN-based classification of fNIRS signals in motor imagery BCI system. Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480 [No Abstract] [Full Text] [Related]
47. Multi-Domain Convolutional Neural Networks for Lower-Limb Motor Imagery Using Dry vs. Wet Electrodes. Jeong JH; Choi JH; Kim KT; Lee SJ; Kim DJ; Kim HM Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640992 [TBL] [Abstract][Full Text] [Related]
48. A novel deep learning approach for classification of EEG motor imagery signals. Tabar YR; Halici U J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952 [TBL] [Abstract][Full Text] [Related]
49. Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology. Otálora S; Atzori M; Andrearczyk V; Khan A; Müller H Front Bioeng Biotechnol; 2019; 7():198. PubMed ID: 31508414 [TBL] [Abstract][Full Text] [Related]
50. Transfer Learning for P300 Brain-Computer Interfaces by Joint Alignment of Feature Vectors. Altindis F; Banerjee A; Phlypo R; Yilmaz B; Congedo M IEEE J Biomed Health Inform; 2023 Oct; 27(10):4696-4706. PubMed ID: 37506011 [TBL] [Abstract][Full Text] [Related]
51. An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction. Zeng H; Li X; Borghini G; Zhao Y; Aricò P; Di Flumeri G; Sciaraffa N; Zakaria W; Kong W; Babiloni F Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805522 [TBL] [Abstract][Full Text] [Related]
52. Deep Neural Network with Joint Distribution Matching for Cross-Subject Motor Imagery Brain-Computer Interfaces. Zhao X; Zhao J; Liu C; Cai W Biomed Res Int; 2020; 2020():7285057. PubMed ID: 32185216 [TBL] [Abstract][Full Text] [Related]
53. Subject- and task-independent neural correlates and prediction of decision confidence in perceptual decision making. Fernandez-Vargas J; Tremmel C; Valeriani D; Bhattacharyya S; Cinel C; Citi L; Poli R J Neural Eng; 2021 May; 18(4):. PubMed ID: 33780913 [No Abstract] [Full Text] [Related]
54. Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires. Collazos-Huertas DF; Velasquez-Martinez LF; Perez-Nastar HD; Alvarez-Meza AM; Castellanos-Dominguez G Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372338 [TBL] [Abstract][Full Text] [Related]
55. Data augmentation for learning predictive models on EEG: a systematic comparison. Rommel C; Paillard J; Moreau T; Gramfort A J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36368035 [No Abstract] [Full Text] [Related]
56. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine. Gao L; Cheng W; Zhang J; Wang J Rev Sci Instrum; 2016 Aug; 87(8):085110. PubMed ID: 27587163 [TBL] [Abstract][Full Text] [Related]
57. Leveraging anatomical information to improve transfer learning in brain-computer interfaces. Wronkiewicz M; Larson E; Lee AK J Neural Eng; 2015 Aug; 12(4):046027. PubMed ID: 26169961 [TBL] [Abstract][Full Text] [Related]
58. On the Vulnerability of CNN Classifiers in EEG-Based BCIs. Zhang X; Wu D IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):814-825. PubMed ID: 30951472 [TBL] [Abstract][Full Text] [Related]
59. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications. Chaudhary S; Taran S; Bajaj V; Siuly S Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514 [TBL] [Abstract][Full Text] [Related]
60. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces. Khalaf A; Akcakaya M Biomed Eng Online; 2020 Apr; 19(1):23. PubMed ID: 32299441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]