These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32916760)

  • 1. Climate warming restructures an aquatic food web over 28 years.
    Tanentzap AJ; Morabito G; Volta P; Rogora M; Yan ND; Manca M
    Glob Chang Biol; 2020 Dec; 26(12):6852-6866. PubMed ID: 32916760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach.
    Wagner A; Benndorf J
    Oecologia; 2007 Mar; 151(2):351-64. PubMed ID: 17120058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.
    Davenport JM; Chalcraft DR
    J Anim Ecol; 2012 Jan; 81(1):242-50. PubMed ID: 21950407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turning up the heat: warming influences plankton biomass and spring phenology in subtropical waters characterized by extensive fish omnivory.
    He H; Li Q; Li J; Han Y; Cao Y; Liu W; Yu J; Li K; Liu Z; Jeppesen E
    Oecologia; 2020 Oct; 194(1-2):251-265. PubMed ID: 32964292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change negates positive CO
    Ullah H; Fordham DA; Nagelkerken I
    Sci Total Environ; 2021 Dec; 801():149624. PubMed ID: 34419906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From plankton to top predators: bottom-up control of a marine food web across four trophic levels.
    Frederiksen M; Edwards M; Richardson AJ; Halliday NC; Wanless S
    J Anim Ecol; 2006 Nov; 75(6):1259-68. PubMed ID: 17032358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing temperature and productivity change biomass, trophic pyramids and community-level omega-3 fatty acid content in subarctic lake food webs.
    Keva O; Taipale SJ; Hayden B; Thomas SM; Vesterinen J; Kankaala P; Kahilainen KK
    Glob Chang Biol; 2021 Jan; 27(2):282-296. PubMed ID: 33124178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosted food web productivity through ocean acidification collapses under warming.
    Goldenberg SU; Nagelkerken I; Ferreira CM; Ullah H; Connell SD
    Glob Chang Biol; 2017 Oct; 23(10):4177-4184. PubMed ID: 28447365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions?
    de Senerpont Domis LN; Mooij WM; Hülsmann S; van Nes EH; Scheffer M
    Oecologia; 2007 Jan; 150(4):682-98. PubMed ID: 17024385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating consumptive and nonconsumptive predator effects on prey density using field time-series data.
    Marino JA; Peacor SD; Bunnell DB; Vanderploeg HA; Pothoven SA; Elgin AK; Bence JR; Jiao J; Ionides EL
    Ecology; 2019 Mar; 100(3):e02583. PubMed ID: 30565223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraguild predation, invertebrate predators, and trophic cascades in lake food webs.
    Hart D
    J Theor Biol; 2002 Sep; 218(1):111-28. PubMed ID: 12297074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature effects on prey and basal resources exceed that of predators in an experimental community.
    Thakur MP; Griffin JN; Künne T; Dunker S; Fanesi A; Eisenhauer N
    Ecol Evol; 2018 Dec; 8(24):12670-12680. PubMed ID: 30619572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food web structure shaped by habitat size and climate across a latitudinal gradient.
    Romero GQ; Piccoli GC; de Omena PM; Gonçalves-Souza T
    Ecology; 2016 Oct; 97(10):2705-2715. PubMed ID: 27859108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation.
    Ullah H; Nagelkerken I; Goldenberg SU; Fordham DA
    PLoS Biol; 2018 Jan; 16(1):e2003446. PubMed ID: 29315309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warming shifts top-down and bottom-up control of pond food web structure and function.
    Shurin JB; Clasen JL; Greig HS; Kratina P; Thompson PL
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1605):3008-17. PubMed ID: 23007089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogens trigger top-down climate forcing on ecosystem dynamics.
    Edeline E; Groth A; Cazelles B; Claessen D; Winfield IJ; Ohlberger J; Asbjørn Vøllestad L; Stenseth NC; Ghil M
    Oecologia; 2016 Jun; 181(2):519-32. PubMed ID: 26910776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifting trophic control of fishery-ecosystem dynamics following biological invasions.
    Goto D; Dunlop ES; Young JD; Jackson DA
    Ecol Appl; 2020 Dec; 30(8):e02190. PubMed ID: 32506720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal niche diversity and trophic redundancy drive neutral effects of warming on energy flux through a stream food web.
    Nelson D; Benstead JP; Huryn AD; Cross WF; Hood JM; Johnson PW; Junker JR; Gíslason GM; Ólafsson JS
    Ecology; 2020 Apr; 101(4):e02952. PubMed ID: 31840236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.