These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32916799)

  • 41. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber.
    Peng X; Mielke M; Booth T
    Opt Express; 2011 Jan; 19(2):923-32. PubMed ID: 21263632
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Delivery of CW laser power up to 300 watts at 1080 nm by an uncooled low-loss anti-resonant hollow-core fiber.
    Zhu X; Wu D; Wang Y; Yu F; Li Q; Qi Y; Knight J; Chen S; Hu L
    Opt Express; 2021 Jan; 29(2):1492-1501. PubMed ID: 33726363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Birefringent, low loss, and broadband semi-tube anti-resonant hollow-core fiber.
    Hong Y; Jia A; Gao S; Sheng Y; Lu X; Liang Z; Zhang Z; Ding W; Wang Y
    Opt Lett; 2023 Jan; 48(1):163-166. PubMed ID: 36563396
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissolved gas sensing using an anti-resonant hollow core optical fiber.
    Kapit J; Michel APM
    Appl Opt; 2021 Nov; 60(33):10354-10358. PubMed ID: 34807043
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3.1 W mid-infrared fiber laser at 4.16 µm based on HBr-filled hollow-core silica fibers.
    Zhou Z; Huang W; Cui Y; Li H; Pei W; Li X; Li Z; Wang M; Wang Z
    Opt Lett; 2022 Nov; 47(22):5785-5788. PubMed ID: 37219103
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers.
    Shephard J; Jones J; Hand D; Bouwmans G; Knight J; Russell P; Mangan B
    Opt Express; 2004 Feb; 12(4):717-23. PubMed ID: 19474876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.
    Popenda MA; Stawska HI; Mazur LM; Jakubowski K; Kosolapov A; Kolyadin A; Bereś-Pawlik E
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28984838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultralow-loss fusion splicing between negative curvature hollow-core fibers and conventional SMFs with a reverse-tapering method.
    Wang C; Yu R; Debord B; Gérôme F; Benabid F; Chiang KS; Xiao L
    Opt Express; 2021 Jul; 29(14):22470-22478. PubMed ID: 34266009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermo-optics of gilded hollow-core fibers.
    Kolchanov DS; Machnev A; Blank A; Barhom H; Zhu L; Lin Q; Inberg A; Rusimova KR; Mikhailova MA; Gumennik A; Salgals T; Bobrovs V; Valev VK; Mosley PJ; Ginzburg P
    Nanoscale; 2024 Jul; ():. PubMed ID: 38980062
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform.
    Talataisong W; Ismaeel R; Marques THR; Abokhamis Mousavi S; Beresna M; Gouveia MA; Sandoghchi SR; Lee T; Cordeiro CMB; Brambilla G
    Sci Rep; 2018 May; 8(1):8113. PubMed ID: 29802299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hollow multilayer photonic bandgap fibers for NIR applications.
    Kuriki K; Shapira O; Hart S; Benoit G; Kuriki Y; Viens J; Bayindir M; Joannopoulos J; Fink Y
    Opt Express; 2004 Apr; 12(8):1510-7. PubMed ID: 19474976
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of nonlinear lensing on the coupling of ultrafast laser pulses to hollow-core waveguides.
    Brahms C
    Opt Express; 2023 Feb; 31(5):7187-7199. PubMed ID: 36859855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers.
    Stolyarov AM; Gumennik A; McDaniel W; Shapira O; Schell B; Sorin F; Kuriki K; Benoit G; Rose A; Joannopoulos JD; Fink Y
    Opt Express; 2012 May; 20(11):12407-15. PubMed ID: 22714227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of A Slow-Light Enhanced Near-Infrared Absorption Spectroscopic Gas Sensor, Based on Hollow-Core Photonic Band-Gap Fiber.
    Wu ZF; Zheng CT; Liu ZW; Yao D; Zheng WX; Wang YD; Wang F; Zhang DM
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical time domain backscattering of antiresonant hollow core fibers.
    Slavík R; Numkam Fokoua ER; Bradley TD; Taranta AA; Komanec M; Zvánovec S; Michaud-Belleau V; Poletti F; Richardson DJ
    Opt Express; 2022 Aug; 30(17):31310-31321. PubMed ID: 36242216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fiber laser source of 8 W at 3.1 µm based on acetylene-filled hollow-core silica fibers.
    Huang W; Wang Z; Zhou Z; Cui Y; Li H; Pei W; Wang M; Chen J
    Opt Lett; 2022 May; 47(9):2354-2357. PubMed ID: 35486798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coherent light transmission properties of commercial photonic crystal hollow core optical fiber.
    Cranch GA; Miller GA
    Appl Opt; 2015 Nov; 54(31):F8-16. PubMed ID: 26560626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modal content measurements (S
    Bock V; Plötner M; De Vries O; Nold J; Haarlammert N; Schreiber T; Eberhardt R; Tünnermann A
    Opt Express; 2017 Feb; 25(4):3006-3012. PubMed ID: 28241518
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Higher-Order Mode Suppression in Antiresonant Nodeless Hollow-Core Fibers.
    Ge A; Meng F; Li Y; Liu B; Hu M
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30769944
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrahigh Resolution Thickness Measurement Technique Based on a Hollow Core Optical Fiber Structure.
    Wu Z; Liu B; Zhu J; Liu J; Wan S; Wu T; Sun J
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.