These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management. Hulcr J; Stelinski LL Annu Rev Entomol; 2017 Jan; 62():285-303. PubMed ID: 27860522 [TBL] [Abstract][Full Text] [Related]
6. Fungal mutualisms and pathosystems: life and death in the ambrosia beetle mycangia. Joseph R; Keyhani NO Appl Microbiol Biotechnol; 2021 May; 105(9):3393-3410. PubMed ID: 33837831 [TBL] [Abstract][Full Text] [Related]
7. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Vanderpool D; Bracewell RR; McCutcheon JP Mol Ecol; 2018 Apr; 27(8):2077-2094. PubMed ID: 29087025 [TBL] [Abstract][Full Text] [Related]
8. Experimental evidence of bark beetle adaptation to a fungal symbiont. Bracewell RR; Six DL Ecol Evol; 2015 Nov; 5(21):5109-19. PubMed ID: 26640686 [TBL] [Abstract][Full Text] [Related]
9. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. Kostovcik M; Bateman CC; Kolarik M; Stelinski LL; Jordal BH; Hulcr J ISME J; 2015 Jan; 9(1):126-38. PubMed ID: 25083930 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional Profiles of a Foliar Fungal Endophyte ( Shaffer JP; Carter ME; Spraker JE; Clark M; Smith BA; Hockett KL; Baltrus DA; Arnold AE mSystems; 2022 Apr; 7(2):e0009122. PubMed ID: 35293790 [TBL] [Abstract][Full Text] [Related]
11. Beetle-Bacterial Symbioses: Endless Forms Most Functional. Salem H; Kaltenpoth M Annu Rev Entomol; 2022 Jan; 67():201-219. PubMed ID: 34606364 [TBL] [Abstract][Full Text] [Related]
12. Fungal Associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) Are Spatially Segregated on the Insect Body. Bateman C; Šigut M; Skelton J; Smith KE; Hulcr J Environ Entomol; 2016 Aug; 45(4):883-90. PubMed ID: 27357160 [TBL] [Abstract][Full Text] [Related]
13. Unearthing carrion beetles' microbiome: characterization of bacterial and fungal hindgut communities across the Silphidae. Kaltenpoth M; Steiger S Mol Ecol; 2014 Mar; 23(6):1251-1267. PubMed ID: 24102980 [TBL] [Abstract][Full Text] [Related]
15. Niche construction theory can link bark beetle-fungus symbiosis type and colonization behavior to large scale causal chain-effects. Six DL Curr Opin Insect Sci; 2020 Jun; 39():27-34. PubMed ID: 32114295 [TBL] [Abstract][Full Text] [Related]
16. Bacterial microbiota protect an invasive bark beetle from a pine defensive compound. Cheng C; Wickham JD; Chen L; Xu D; Lu M; Sun J Microbiome; 2018 Jul; 6(1):132. PubMed ID: 30053907 [TBL] [Abstract][Full Text] [Related]
17. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Six DL; Bentz BJ Microb Ecol; 2007 Jul; 54(1):112-8. PubMed ID: 17264992 [TBL] [Abstract][Full Text] [Related]
18. Ecological and Evolutionary Determinants of Bark Beetle -Fungus Symbioses. Six DL Insects; 2012 Mar; 3(1):339-66. PubMed ID: 26467964 [TBL] [Abstract][Full Text] [Related]
19. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Therrien J; Mason CJ; Cale JA; Adams A; Aukema BH; Currie CR; Raffa KF; Erbilgin N Oecologia; 2015 Oct; 179(2):467-85. PubMed ID: 26037523 [TBL] [Abstract][Full Text] [Related]
20. Chemical signal interactions of the bark beetle with fungal symbionts, and host/non-host trees. Fang J; Liu M; Zhang S; Liu F; Zhang Z; Zhang Q; Kong X J Exp Bot; 2020 Oct; 71(19):6084-6091. PubMed ID: 32589724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]