These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 32916945)
1. Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. T Somasekharan L; Kasoju N; Raju R; Bhatt A Bioengineering (Basel); 2020 Sep; 7(3):. PubMed ID: 32916945 [TBL] [Abstract][Full Text] [Related]
2. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Kallingal N; Ramakrishnan R; Krishnan V K J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058 [TBL] [Abstract][Full Text] [Related]
3. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
4. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
5. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability. Reakasame S; Dranseikiene D; Schrüfer S; Zheng K; Schubert DW; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112336. PubMed ID: 34474887 [TBL] [Abstract][Full Text] [Related]
6. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
7. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
8. A Three-Dimensional Bioprinted Copolymer Scaffold with Biocompatibility and Structural Integrity for Potential Tissue Regeneration Applications. Peng BY; Ou KL; Liu CM; Chu SF; Huang BH; Cho YC; Saito T; Tsai CH; Hung KS; Lan WC Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015671 [TBL] [Abstract][Full Text] [Related]
10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
11. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
12. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Zhao Y; Li Y; Mao S; Sun W; Yao R Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399 [TBL] [Abstract][Full Text] [Related]
13. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
14. Shape Fidelity Evaluation of Alginate-Based Hydrogels through Extrusion-Based Bioprinting. Temirel M; Dabbagh SR; Tasoglu S J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412866 [TBL] [Abstract][Full Text] [Related]
15. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness. Li J; Zhang Y; Enhe J; Yao B; Wang Y; Zhu D; Li Z; Song W; Duan X; Yuan X; Fu X; Huang S Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112193. PubMed ID: 34082990 [TBL] [Abstract][Full Text] [Related]
16. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
17. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration. Sanaei K; Zamanian A; Mashayekhan S; Ramezani T Iran Biomed J; 2023 Sep; 27(5):280-93. PubMed ID: 37873644 [TBL] [Abstract][Full Text] [Related]
18. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031 [TBL] [Abstract][Full Text] [Related]
19. Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting. Cavallo A; Al Kayal T; Mero A; Mezzetta A; Guazzelli L; Soldani G; Losi P J Funct Biomater; 2023 Sep; 14(9):. PubMed ID: 37754873 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]