These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Acoustic tweezers for the life sciences. Ozcelik A; Rufo J; Guo F; Gu Y; Li P; Lata J; Huang TJ Nat Methods; 2018 Dec; 15(12):1021-1028. PubMed ID: 30478321 [TBL] [Abstract][Full Text] [Related]
5. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Tian Z; Yang S; Huang PH; Wang Z; Zhang P; Gu Y; Bachman H; Chen C; Wu M; Xie Y; Huang TJ Sci Adv; 2019 May; 5(5):eaau6062. PubMed ID: 31172021 [TBL] [Abstract][Full Text] [Related]
6. Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles. Li W; Yao Z; Ma T; Ye Z; He K; Wang L; Wang H; Fu Y; Xu X Adv Colloid Interface Sci; 2024 Oct; 332():103276. PubMed ID: 39146580 [TBL] [Abstract][Full Text] [Related]
7. Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulation. Li T; Li J; Bo L; Bachman H; Fan B; Cheng J; Tian Z Sci Adv; 2024 May; 10(21):eadm7698. PubMed ID: 38787945 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional heating and patterning dynamics of particles in microscale acoustic tweezers. Weser R; Deng Z; Kondalkar VV; Darinskii AN; Cierpka C; Schmidt H; König J Lab Chip; 2022 Jul; 22(15):2886-2901. PubMed ID: 35851398 [TBL] [Abstract][Full Text] [Related]
9. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731 [TBL] [Abstract][Full Text] [Related]
10. Acoustic tweezers using bisymmetric coherent surface acoustic waves for dynamic and reconfigurable manipulation of particle multimers. Pan H; Mei D; Xu C; Li X; Wang Y J Colloid Interface Sci; 2023 Aug; 643():115-123. PubMed ID: 37058887 [TBL] [Abstract][Full Text] [Related]
11. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells. Pan H; Mei D; Xu C; Han S; Wang Y Lab Chip; 2023 Jan; 23(2):215-228. PubMed ID: 36420975 [TBL] [Abstract][Full Text] [Related]
12. Holographic Acoustic Tweezers for 5-DoF Manipulation of Nanocarrier Clusters toward Targeted Drug Delivery. Cao HX; Jung D; Lee HS; Nguyen VD; Choi E; Kang B; Park JO; Kim CS Pharmaceutics; 2022 Jul; 14(7):. PubMed ID: 35890382 [TBL] [Abstract][Full Text] [Related]
16. 3-D Acoustic Tweezers Using a 2-D Matrix Array With Time-Multiplexed Traps. Hu Q; Ma T; Zhang Q; Wang J; Yang Y; Cai F; Zheng H IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3646-3653. PubMed ID: 34280096 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional manipulation of single cells using surface acoustic waves. Guo F; Mao Z; Chen Y; Xie Z; Lata JP; Li P; Ren L; Liu J; Yang J; Dao M; Suresh S; Huang TJ Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1522-7. PubMed ID: 26811444 [TBL] [Abstract][Full Text] [Related]
18. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools. Zhu Y; You M; Shi Y; Huang H; Wei Z; He T; Xiong S; Wang Z; Cheng X Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512637 [TBL] [Abstract][Full Text] [Related]
19. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves. Collins DJ; Devendran C; Ma Z; Ng JW; Neild A; Ai Y Sci Adv; 2016 Jul; 2(7):e1600089. PubMed ID: 27453940 [TBL] [Abstract][Full Text] [Related]
20. Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers. Baudoin M; Gerbedoen JC; Riaud A; Matar OB; Smagin N; Thomas JL Sci Adv; 2019 Apr; 5(4):eaav1967. PubMed ID: 30993201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]