BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 32917752)

  • 1. The Heterotrophic Bacterium Cupriavidus pinatubonensis JMP134 Oxidizes Sulfide to Sulfate with Thiosulfate as a Key Intermediate.
    Xin Y; Gao R; Cui F; Lü C; Liu H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic Localization of Sulfide:Quinone Oxidoreductase and Persulfide Dioxygenase of Cupriavidus pinatubonensis JMP134.
    Gao R; Liu H; Xun L
    Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28939597
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Xin Y; Wang Y; Zhang H; Wu Y; Xia Y; Li H; Qu X
    Metabolites; 2023 Feb; 13(2):. PubMed ID: 36837837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cupriavidus necator H16 Uses Flavocytochrome
    Lü C; Xia Y; Liu D; Zhao R; Gao R; Liu H; Xun L
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant Escherichia coli with sulfide:quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway.
    Xin Y; Liu H; Cui F; Liu H; Xun L
    Environ Microbiol; 2016 Dec; 18(12):5123-5136. PubMed ID: 27573649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodaneses minimize the accumulation of cellular sulfane sulfur to avoid disulfide stress during sulfide oxidation in bacteria.
    Ran M; Li Q; Xin Y; Ma S; Zhao R; Wang M; Xun L; Xia Y
    Redox Biol; 2022 Jul; 53():102345. PubMed ID: 35653932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FisR activates σ
    Li H; Li J; Lü C; Xia Y; Xin Y; Liu H; Xun L; Liu H
    Mol Microbiol; 2017 Aug; 105(3):373-384. PubMed ID: 28612361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum).
    Chan LK; Weber TS; Morgan-Kiss RM; Hanson TE
    Microbiology (Reading); 2008 Mar; 154(Pt 3):818-829. PubMed ID: 18310028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H
    Hou N; Xia Y; Wang X; Liu H; Liu H; Xun L
    Biodegradation; 2018 Dec; 29(6):511-524. PubMed ID: 30141069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system.
    Holkenbrink C; Barbas SO; Mellerup A; Otaki H; Frigaard NU
    Microbiology (Reading); 2011 Apr; 157(Pt 4):1229-1239. PubMed ID: 21233162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of genes for sulfur oxidation in the intracellular chemoautotrophic symbiont of the deep-sea bivalve Calyptogena okutanii.
    Harada M; Yoshida T; Kuwahara H; Shimamura S; Takaki Y; Kato C; Miwa T; Miyake H; Maruyama T
    Extremophiles; 2009 Nov; 13(6):895-903. PubMed ID: 19730970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions.
    Xia Y; Lü C; Hou N; Xin Y; Liu J; Liu H; Xun L
    ISME J; 2017 Dec; 11(12):2754-2766. PubMed ID: 28777380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of sulfide-oxidizing Sulfurimonas strains reveals a new mode of thiosulfate formation in subsurface environments.
    Lahme S; Callbeck CM; Eland LE; Wipat A; Enning D; Head IM; Hubert CRJ
    Environ Microbiol; 2020 May; 22(5):1784-1800. PubMed ID: 31840396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the sulfide-oxidizing bacterium Geobacillus thermodenitrificans to restrict H
    Wu X; Wan J; Wang Q; Liu Z; Xia Y; Xun L; Liu H
    J Environ Manage; 2024 Mar; 354():120416. PubMed ID: 38408391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the sulfur metabolism of Chlorobaculum tepidum by label-free quantitative proteomics.
    Lyratzakis A; Meier-Credo J; Langer JD; Tsiotis G
    Proteomics; 2023 May; 23(10):e2200138. PubMed ID: 36790022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water.
    Zhang X; Zhang D; Huang Y; Wu S; Lu P
    Water Res; 2020 Oct; 185():116270. PubMed ID: 32784035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur oxidation in mutants of the photosynthetic green sulfur bacterium Chlorobium tepidum devoid of cytochrome c-554 and SoxB.
    Azai C; Tsukatani Y; Harada J; Oh-oka H
    Photosynth Res; 2009 May; 100(2):57-65. PubMed ID: 19421892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.