These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32917899)

  • 1. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio.
    Bala PC; Eisenreich BR; Yoo SBM; Hayden BY; Park HS; Zimmermann J
    Nat Commun; 2020 Sep; 11(1):4560. PubMed ID: 32917899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anipose: A toolkit for robust markerless 3D pose estimation.
    Karashchuk P; Rupp KL; Dickinson ES; Walling-Bell S; Sanders E; Azim E; Brunton BW; Tuthill JC
    Cell Rep; 2021 Sep; 36(13):109730. PubMed ID: 34592148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A markerless platform for ambulatory systems neuroscience.
    Silvernagel MP; Ling AS; Nuyujukian P;
    Sci Robot; 2021 Sep; 6(58):eabj7045. PubMed ID: 34516749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MacaquePose: A Novel "In the Wild" Macaque Monkey Pose Dataset for Markerless Motion Capture.
    Labuguen R; Matsumoto J; Negrete SB; Nishimaru H; Nishijo H; Takada M; Go Y; Inoue KI; Shibata T
    Front Behav Neurosci; 2020; 14():581154. PubMed ID: 33584214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating 3-dimensional liver motion using deep learning and 2-dimensional ultrasound images.
    Yagasaki S; Koizumi N; Nishiyama Y; Kondo R; Imaizumi T; Matsumoto N; Ogawa M; Numata K
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):1989-1995. PubMed ID: 33009985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A freely-moving monkey treadmill model.
    Foster JD; Nuyujukian P; Freifeld O; Gao H; Walker R; I Ryu S; H Meng T; Murmann B; J Black M; Shenoy KV
    J Neural Eng; 2014 Aug; 11(4):046020. PubMed ID: 24995476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Markerless motion capture using appearance and inertial data.
    Wong C; Zhang Z; Lo B; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6907-10. PubMed ID: 25571584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the kinematic features of dexterous finger movements in nonhuman primates with markerless tracking.
    North R; Wurr R; Macon R; Mannion C; Hyde J; Torres-Espin A; Rosenzweig ES; Ferguson AR; Tuszynski MH; Beattie MS; Bresnahan JC; Joiner WM
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6110-6115. PubMed ID: 34892511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markerless 2D kinematic analysis of underwater running: A deep learning approach.
    Cronin NJ; Rantalainen T; Ahtiainen JP; Hynynen E; Waller B
    J Biomech; 2019 Apr; 87():75-82. PubMed ID: 30850178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images.
    Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD
    Elife; 2021 Mar; 10():. PubMed ID: 33781383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using deep neural networks for kinematic analysis: Challenges and opportunities.
    Cronin NJ
    J Biomech; 2021 Jun; 123():110460. PubMed ID: 34029787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development and evaluation of a fully automated markerless motion capture workflow.
    Needham L; Evans M; Wade L; Cosker DP; McGuigan MP; Bilzon JL; Colyer SL
    J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
    Zelman I; Galun M; Akselrod-Ballin A; Yekutieli Y; Hochner B; Flash T
    J Neurosci Methods; 2009 Aug; 182(1):97-109. PubMed ID: 19505502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal deep learning methods for motion estimation using 4D OCT image data.
    Bengs M; Gessert N; Schlüter M; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):943-952. PubMed ID: 32445128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Single Camera Human 3D-Kinematics.
    Bittner M; Yang WT; Zhang X; Seth A; van Gemert J; van der Helm FCT
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LiftPose3D, a deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals.
    Gosztolai A; Günel S; Lobato-Ríos V; Pietro Abrate M; Morales D; Rhodin H; Fua P; Ramdya P
    Nat Methods; 2021 Aug; 18(8):975-981. PubMed ID: 34354294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A learning-based markerless approach for full-body kinematics estimation in-natura from a single image.
    Drory A; Li H; Hartley R
    J Biomech; 2017 Apr; 55():1-10. PubMed ID: 28237186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.