These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 32917944)
1. Factors controlling accumulation of organic carbon in a rift-lake, Oligocene Vietnam. Rizzi M; Hovikoski J; Schovsbo NH; Therkelsen J; Olivarius M; Nytoft HP; Nga LH; Thuy NTT; Toan DM; Bojesen-Koefoed J; Petersen HI; Nielsen LH; Abatzis I; Korte C; Fyhn MBW Sci Rep; 2020 Sep; 10(1):14976. PubMed ID: 32917944 [TBL] [Abstract][Full Text] [Related]
2. Elemental Composition and Organic Petrology of a Lower Carboniferous-Age Freshwater Oil Shale in Nova Scotia, Canada. Goodarzi F; Gentzis T; Sanei H; Pedersen PK ACS Omega; 2019 Dec; 4(24):20773-20786. PubMed ID: 31858064 [TBL] [Abstract][Full Text] [Related]
3. Controlling Factors and Formation Models of Organic Matter Accumulation for the Upper Permian Dalong Formation Black Shale in the Lower Yangtze Region, South China: Constraints from Geochemical Evidence. Ding J; Zhang J; Huo Z; Shen B; Shi G; Yang Z; Li X; Li C ACS Omega; 2021 Feb; 6(5):3681-3692. PubMed ID: 33585748 [TBL] [Abstract][Full Text] [Related]
4. Sedimentation Models and Development Mechanisms of Organic-Rich Shales of the Lower Carboniferous Dawuba Formation: A Case Study in the Yaziluo Rift Trough, South of Guizhou Province, Southern China. Zheng F; Tang X; Yuan K; Lin T; You M; Niu J; Zi Y; Liang Y ACS Omega; 2022 Aug; 7(33):29054-29071. PubMed ID: 36033673 [TBL] [Abstract][Full Text] [Related]
5. The influences of sedimentary environments on carbon accumulation in lacustrine deposits: Evidences from elemental geochemistry. Zhang M; Wang L Sci Total Environ; 2024 Jan; 907():167821. PubMed ID: 37848141 [TBL] [Abstract][Full Text] [Related]
6. Disturbance mechanisms of lacustrine organic carbon burial: Case study of Cuopu Lake, Southwest China. Jiang Q; Li S; Chen Z; Huang C; Wu W; Wan H; Hu Z; Han C; Zhang Z; Yang H; Huang T Sci Total Environ; 2020 Dec; 746():140615. PubMed ID: 32745845 [TBL] [Abstract][Full Text] [Related]
7. Tectonics of the baikal rift deduced from volcanism and sedimentation: a review oriented to the Baikal and Hovsgol lake systems. Ivanov AV; Demonterova EI Prog Mol Subcell Biol; 2009; 47():27-54. PubMed ID: 19198772 [TBL] [Abstract][Full Text] [Related]
8. Controls on Organic Matter Accumulation of the Triassic Yanchang Formation Lacustrine Shales in the Ordos Basin, North China. Chen X; Zhang B; Huang H; Mao Z ACS Omega; 2021 Oct; 6(40):26048-26064. PubMed ID: 34660966 [TBL] [Abstract][Full Text] [Related]
9. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Wharton RA; Lyons WB; Des Marais DJ Chem Geol; 1993; 107():159-72. PubMed ID: 11539299 [TBL] [Abstract][Full Text] [Related]
10. A millimeter-scale insight into formation mechanism of lacustrine black shale in tephra deposition background. Lin S; Hou L; Luo X; Wu Y Sci Rep; 2022 Jul; 12(1):11511. PubMed ID: 35798815 [TBL] [Abstract][Full Text] [Related]
11. Effects of land-use change on deposition and composition of organic matter in Frickenhauser See, northern Bavaria, Germany. Enters D; Lücke A; Zolitschka B Sci Total Environ; 2006 Oct; 369(1-3):178-87. PubMed ID: 16842838 [TBL] [Abstract][Full Text] [Related]
12. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift. Simoneit BR; Aboul-Kassim TA; Tiercelin JJ Appl Geochem; 2000 Mar; 15(3):355-68. PubMed ID: 17654787 [TBL] [Abstract][Full Text] [Related]
13. Response of organic carbon burial to trophic level changes in a shallow eutrophic lake in SE China. Wu P; Gao C; Chen F; Yu S J Environ Sci (China); 2016 Aug; 46():220-8. PubMed ID: 27521954 [TBL] [Abstract][Full Text] [Related]
14. Factors Controlling the Lower Radioactivity and Its Relation with Higher Organic Matter Content for Middle Jurassic Oil Shale in Yuqia Depression, Northern Qaidam Basin, China: Evidence from Organic and Inorganic Geochemistry. Guo W; Chen G; Li Y; Li Y; Zhang Y; Zhou J; Han W; Xu X; Ma Y; Dang H ACS Omega; 2021 Mar; 6(11):7360-7373. PubMed ID: 33778249 [TBL] [Abstract][Full Text] [Related]
15. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey). Glombitza C; Stockhecke M; Schubert CJ; Vetter A; Kallmeyer J Front Microbiol; 2013; 4():209. PubMed ID: 23908647 [TBL] [Abstract][Full Text] [Related]
16. Lake eutrophication and its implications for organic carbon sequestration in Europe. Anderson NJ; Bennion H; Lotter AF Glob Chang Biol; 2014 Sep; 20(9):2741-51. PubMed ID: 24677531 [TBL] [Abstract][Full Text] [Related]
17. Organic Carbon Burial in Lakes and Reservoirs of the Conterminous United States. Clow DW; Stackpoole SM; Verdin KL; Butman DE; Zhu Z; Krabbenhoft DP; Striegl RG Environ Sci Technol; 2015 Jul; 49(13):7614-22. PubMed ID: 26061185 [TBL] [Abstract][Full Text] [Related]
18. Controls on the Organic Matter Accumulation of the Marine-Continental Transitional Shanxi Formation Shale in the Southeastern Ordos Basin. Xu L; Cheng Y; Zhang J; Liu Y; Yang Y ACS Omega; 2022 Feb; 7(5):4317-4332. PubMed ID: 35155925 [TBL] [Abstract][Full Text] [Related]
19. Paleoenvironment and Organic Characterization of the Lower Cretaceous Lacustrine Source Rocks in the Erlian Basin: The Influence of Hydrothermal and Volcanic Activity on the Source Rock Quality. Wu P; Dujie H; Cao L; Zheng R; Wei X; Ma X; Zhao Z; Chen J ACS Omega; 2023 Jan; 8(2):1885-1911. PubMed ID: 36687098 [TBL] [Abstract][Full Text] [Related]
20. Constraints of Sedimentary Environment on Shale Organic Matter Enrichment: Insights from Elemental Geochemistry and Multiple Factor Analysis. Shao X; Xu P; Jiang Z; Song Y; Yang Y; Wang D ACS Omega; 2024 Apr; 9(14):15915-15934. PubMed ID: 38617680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]