These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32918091)
1. Rapid intestinal glucuronidation and hepatic glucuronide recycling contributes significantly to the enterohepatic circulation of icaritin and its glucuronides in vivo. Rong Y; Tu Y; Yin T; Meng Z; Dou G; Hu M Arch Toxicol; 2020 Nov; 94(11):3737-3749. PubMed ID: 32918091 [TBL] [Abstract][Full Text] [Related]
2. Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides. Zeng M; Sun R; Basu S; Ma Y; Ge S; Yin T; Gao S; Zhang J; Hu M Mol Nutr Food Res; 2016 May; 60(5):1006-19. PubMed ID: 26843117 [TBL] [Abstract][Full Text] [Related]
3. Application of ultra high-performance liquid chromatography tandem mass spectrometry to investigate the regioselective glucuronidation of icaritin in vitro. Rong Y; Meng Z; Li J; Zhu X; Gan H; Gu R; Wu Z; Sun W; Liu T; Zheng Y; Jin M; Peng J; Wang X; Dou G J Pharm Biomed Anal; 2018 May; 154():444-453. PubMed ID: 29587224 [TBL] [Abstract][Full Text] [Related]
4. Systematic considerations for a multicomponent pharmacokinetic study of Epimedii wushanensis herba: From method establishment to pharmacokinetic marker selection. Wang C; Wu C; Zhang J; Jin Y Phytomedicine; 2015 Apr; 22(4):487-97. PubMed ID: 25925971 [TBL] [Abstract][Full Text] [Related]
5. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7-O-β-d-glucuronide and their aglycones from an aqueous extract of Scutellariae Radix in the rat. Cai Y; Li S; Li T; Zhou R; Wai AT; Yan R J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Jul; 1026():124-133. PubMed ID: 26809374 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Biodistribution of Icaritin and Its Phase-II Metabolite in Rat Tissues by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Zhang SQ Anal Sci; 2016; 32(6):631-7. PubMed ID: 27302583 [TBL] [Abstract][Full Text] [Related]
7. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Xu H; Kulkarni KH; Singh R; Yang Z; Wang SW; Tam VH; Hu M Mol Pharm; 2009; 6(6):1703-15. PubMed ID: 19736994 [TBL] [Abstract][Full Text] [Related]
8. Oral absorption, distribution, metabolism, and excretion of icaritin in rats by Q-TOF and UHPLC-MS/MS. Zhang SQ; Zhang SZ Drug Test Anal; 2017 Oct; 9(10):1604-1610. PubMed ID: 28303675 [TBL] [Abstract][Full Text] [Related]
9. Hepatic Disposition of Gemfibrozil and Its Major Metabolite Gemfibrozil 1-O-β-Glucuronide. Kimoto E; Li R; Scialis RJ; Lai Y; Varma MV Mol Pharm; 2015 Nov; 12(11):3943-52. PubMed ID: 26378985 [TBL] [Abstract][Full Text] [Related]
10. Modeling approach for multiple transporters-mediated drug-drug interactions in sandwich-cultured human hepatocytes: effect of cyclosporin A on hepatic disposition of mycophenolic acid phenyl-glucuronide. Matsunaga N; Suzuki K; Nakanishi T; Ogawa M; Imawaka H; Tamai I Drug Metab Pharmacokinet; 2015 Apr; 30(2):142-8. PubMed ID: 25989889 [TBL] [Abstract][Full Text] [Related]
11. Glucuronidation of icaritin by human liver microsomes, human intestine microsomes and expressed UDP-glucuronosyltransferase enzymes: identification of UGT1A3, 1A9 and 2B7 as the main contributing enzymes. Wang L; Hong X; Yao Z; Dai Y; Zhao G; Qin Z; Wu B; Gonzalez FJ; Yao X Xenobiotica; 2018 Apr; 48(4):357-367. PubMed ID: 28443723 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic Basis of Cabotegravir-Glucuronide Disposition in Humans. Patel M; Eberl HC; Wolf A; Pierre E; Polli JW; Zamek-Gliszczynski MJ J Pharmacol Exp Ther; 2019 Aug; 370(2):269-277. PubMed ID: 31175220 [TBL] [Abstract][Full Text] [Related]
13. Organic Anion Transporting Polypeptide-Mediated Hepatic Uptake of Glucuronide Metabolites of Androgens. Li CY; Gupta A; Gáborik Z; Kis E; Prasad B Mol Pharmacol; 2020 Sep; 98(3):234-242. PubMed ID: 32587096 [TBL] [Abstract][Full Text] [Related]
14. UGT-mediated metabolism plays a dominant role in the pharmacokinetic behavior and the disposition of morusin in vivo and in vitro. Hou C; Liu W; Liang Z; Han W; Li J; Ye L; Liu M; Cai Z; Zhao J; Chen Y; Liu S; Tang L J Pharm Biomed Anal; 2018 May; 154():339-353. PubMed ID: 29571132 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic studies on the absorption and disposition of scutellarin in humans: selective OATP2B1-mediated hepatic uptake is a likely key determinant for its unique pharmacokinetic characteristics. Gao C; Zhang H; Guo Z; You T; Chen X; Zhong D Drug Metab Dispos; 2012 Oct; 40(10):2009-20. PubMed ID: 22822035 [TBL] [Abstract][Full Text] [Related]
16. Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Chen J; Wang S; Jia X; Bajimaya S; Lin H; Tam VH; Hu M Drug Metab Dispos; 2005 Dec; 33(12):1777-84. PubMed ID: 16120792 [TBL] [Abstract][Full Text] [Related]
17. Intestinal and hepatic glucuronidation of flavonoids. Zhang L; Zuo Z; Lin G Mol Pharm; 2007; 4(6):833-45. PubMed ID: 17979245 [TBL] [Abstract][Full Text] [Related]
18. Disposition of flavonoids via enteric recycling: enzyme stability affects characterization of prunetin glucuronidation across species, organs, and UGT isoforms. Joseph TB; Wang SW; Liu X; Kulkarni KH; Wang J; Xu H; Hu M Mol Pharm; 2007; 4(6):883-94. PubMed ID: 18052087 [TBL] [Abstract][Full Text] [Related]
19. Triple Recycling Processes Impact Systemic and Local Bioavailability of Orally Administered Flavonoids. Dai P; Zhu L; Luo F; Lu L; Li Q; Wang L; Wang Y; Wang X; Hu M; Liu Z AAPS J; 2015 May; 17(3):723-36. PubMed ID: 25762448 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. Chen J; Lin H; Hu M J Pharmacol Exp Ther; 2003 Mar; 304(3):1228-35. PubMed ID: 12604700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]