These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 32918226)

  • 1. Sunlight, Vitamin D, and Xeroderma Pigmentosum.
    Martens MC; Emmert S; Boeckmann L
    Adv Exp Med Biol; 2020; 1268():319-331. PubMed ID: 32918226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells.
    Cordonnier AM; Fuchs RP
    Mutat Res; 1999 Oct; 435(2):111-9. PubMed ID: 10556591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet damage, DNA repair and vitamin D in nonmelanoma skin cancer and in malignant melanoma: an update.
    Reichrath J; Rass K
    Adv Exp Med Biol; 2014; 810():208-33. PubMed ID: 25207368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for defective repair of cyclobutane pyrimidine dimers with normal repair of other DNA photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells.
    Barrett SF; Robbins JH; Tarone RE; Kraemer KH
    Mutat Res; 1991 Nov; 255(3):281-91. PubMed ID: 1719400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase eta.
    Yamada A; Masutani C; Iwai S; Hanaoka F
    Nucleic Acids Res; 2000 Jul; 28(13):2473-80. PubMed ID: 10871396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription.
    van Hoffen A; Kalle WH; de Jong-Versteeg A; Lehmann AR; van Zeeland AA; Mullenders LH
    Nucleic Acids Res; 1999 Jul; 27(14):2898-904. PubMed ID: 10390531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of nucleotide excision repair defects between XPD-mutated fibroblasts derived from trichothiodystrophy and xeroderma pigmentosum patients.
    Nishiwaki T; Kobayashi N; Iwamoto T; Yamamoto A; Sugiura S; Liu YC; Sarasin A; Okahashi Y; Hirano M; Ueno S; Mori T
    DNA Repair (Amst); 2008 Dec; 7(12):1990-8. PubMed ID: 18817897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum.
    Cleaver JE
    J Dermatol Sci; 2000 May; 23(1):1-11. PubMed ID: 10699759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular genetics of Xeroderma pigmentosum variant.
    Gratchev A; Strein P; Utikal J; Sergij G
    Exp Dermatol; 2003 Oct; 12(5):529-36. PubMed ID: 14705792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement for functional DNA polymerase eta in genome-wide repair of UV-induced DNA damage during S phase.
    Auclair Y; Rouget R; Belisle JM; Costantino S; Drobetsky EA
    DNA Repair (Amst); 2010 Jul; 9(7):754-64. PubMed ID: 20457011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for persistent UV-induced DNA damage and altered DNA damage response in xeroderma pigmentosa patient corneas.
    Akepogu J; Jakati S; Chaurasia S; Ramachandran C
    Exp Eye Res; 2024 Jun; 243():109901. PubMed ID: 38641197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of XPB helicase on recruitment and redistribution of nucleotide excision repair proteins at sites of UV-induced DNA damage.
    Oh KS; Imoto K; Boyle J; Khan SG; Kraemer KH
    DNA Repair (Amst); 2007 Sep; 6(9):1359-70. PubMed ID: 17509950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spotlight on 'xeroderma pigmentosum'.
    Fassihi H
    Photochem Photobiol Sci; 2013 Jan; 12(1):78-84. PubMed ID: 23132518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA repair and ultraviolet mutagenesis in cells from a new patient with xeroderma pigmentosum group G and cockayne syndrome resemble xeroderma pigmentosum cells.
    Moriwaki S; Stefanini M; Lehmann AR; Hoeijmakers JH; Robbins JH; Rapin I; Botta E; Tanganelli B; Vermeulen W; Broughton BC; Kraemer KH
    J Invest Dermatol; 1996 Oct; 107(4):647-53. PubMed ID: 8823375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xeroderma pigmentosum: from symptoms and genetics to gene-based skin therapy.
    Magnaldo T; Sarasin A
    Cells Tissues Organs; 2004; 177(3):189-98. PubMed ID: 15388993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xeroderma pigmentosum genes: functions inside and outside DNA repair.
    Sugasawa K
    Carcinogenesis; 2008 Mar; 29(3):455-65. PubMed ID: 18174245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xeroderma Pigmentosum: Gene Variants and Splice Variants.
    Martens MC; Emmert S; Boeckmann L
    Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial complementation of the DNA repair defects in cells from xeroderma pigmentosum groups A, C, D and F but not G by the denV gene from bacteriophage T4.
    Francis MA; Bagga P; Athwal R; Rainbow AJ
    Photochem Photobiol; 2000 Sep; 72(3):365-73. PubMed ID: 10989608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal, error-prone bypass of photoproducts by xeroderma pigmentosum variant cell extracts results in extreme strand bias for the kinds of mutations induced by UV light.
    McGregor WG; Wei D; Maher VM; McCormick JJ
    Mol Cell Biol; 1999 Jan; 19(1):147-54. PubMed ID: 9858539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Xeroderma pigmentosum].
    Takeuchi S
    Nihon Rinsho; 2000 Jul; 58(7):1496-500. PubMed ID: 10921330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.