These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32918559)
1. Pupil diameter as a biomarker of effort in goal-directed gait. Saeedpour-Parizi MR; Hassan SE; Shea JB Exp Brain Res; 2020 Nov; 238(11):2615-2623. PubMed ID: 32918559 [TBL] [Abstract][Full Text] [Related]
2. Pupillometric and blink measures of diverse task loads: Implications for working memory models. Chen S; Epps J; Paas F Br J Educ Psychol; 2023 Aug; 93 Suppl 2():318-338. PubMed ID: 36572995 [TBL] [Abstract][Full Text] [Related]
3. Distracted worker: Using pupil size and blink rate to detect cognitive load during manufacturing tasks. Biondi FN; Saberi B; Graf F; Cort J; Pillai P; Balasingam B Appl Ergon; 2023 Jan; 106():103867. PubMed ID: 35970108 [TBL] [Abstract][Full Text] [Related]
4. Central cholinergic pathway involvement in the regulation of pupil diameter, blink rate and cognitive function. Naicker P; Anoopkumar-Dukie S; Grant GD; Neumann DL; Kavanagh JJ Neuroscience; 2016 Oct; 334():180-190. PubMed ID: 27531858 [TBL] [Abstract][Full Text] [Related]
5. Early detection of cognitive decline in Alzheimer's disease using eye tracking. Tokushige SI; Matsumoto H; Matsuda SI; Inomata-Terada S; Kotsuki N; Hamada M; Tsuji S; Ugawa Y; Terao Y Front Aging Neurosci; 2023; 15():1123456. PubMed ID: 37025964 [TBL] [Abstract][Full Text] [Related]
6. Cognitive and motor mechanisms underlying older adults' ability to divide attention while walking. Hall CD; Echt KV; Wolf SL; Rogers WA Phys Ther; 2011 Jul; 91(7):1039-50. PubMed ID: 21527384 [TBL] [Abstract][Full Text] [Related]
7. An analysis of the suitability of a low-cost eye tracker for assessing the cognitive load of drivers. Čegovnik T; Stojmenova K; Jakus G; Sodnik J Appl Ergon; 2018 Apr; 68():1-11. PubMed ID: 29409621 [TBL] [Abstract][Full Text] [Related]
8. Parkinson's patients delay fixations when circumventing an obstacle and performing a dual cognitive task. Pereira VAI; Polastri PF; Simieli L; Rietdyk S; Itikawa Imaizumi LF; Moretto GF; Penedo T; Rodrigues ST; Barbieri FA Gait Posture; 2019 Sep; 73():291-298. PubMed ID: 31400724 [TBL] [Abstract][Full Text] [Related]
9. Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Alnæs D; Sneve MH; Espeseth T; Endestad T; van de Pavert SH; Laeng B J Vis; 2014 Apr; 14(4):. PubMed ID: 24692319 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical goal effects on center of mass velocity and eye fixations during gait. Saeedpour-Parizi MR; Hassan SE; Baniasadi T; Baute KJ; Shea JB Exp Brain Res; 2020 Nov; 238(11):2433-2443. PubMed ID: 32776171 [TBL] [Abstract][Full Text] [Related]
11. Effects of attentional focus and cognitive load on novice dart throwing: Evidence from quiet eye duration and pupillary responses. Asadi A; Saeedpour-Parizi MR; Aiken CA; Jahanbani Z; Houminiyan Sharif Abadi D; Simpson T; Marchant D Hum Mov Sci; 2022 Dec; 86():103015. PubMed ID: 36242826 [TBL] [Abstract][Full Text] [Related]
12. Observing prioritization effects on cognition and gait: The effect of increased cognitive load on cognitively healthy older adults' dual-task performance. Maclean LM; Brown LJE; Khadra H; Astell AJ Gait Posture; 2017 Mar; 53():139-144. PubMed ID: 28157575 [TBL] [Abstract][Full Text] [Related]
13. Task performance and eye activity: predicting behavior relating to cognitive workload. Tsai YF; Viirre E; Strychacz C; Chase B; Jung TP Aviat Space Environ Med; 2007 May; 78(5 Suppl):B176-85. PubMed ID: 17547318 [TBL] [Abstract][Full Text] [Related]
14. Task-evoked pupillary responses track effort exertion: Evidence from task-switching. da Silva Castanheira K; LoParco S; Otto AR Cogn Affect Behav Neurosci; 2021 Jun; 21(3):592-606. PubMed ID: 33083974 [TBL] [Abstract][Full Text] [Related]
15. Physiological investigation of cognitive load in real-life train travelers during information processing. Armougum A; Gaston-Bellegarde A; Joie-La Marle C; Piolino P Appl Ergon; 2020 Nov; 89():103180. PubMed ID: 32763451 [TBL] [Abstract][Full Text] [Related]
16. Cognition, blinks, eye-movements, and pupillary movements during performance of a running memory task. Fukuda K; Stern JA; Brown TB; Russo MB Aviat Space Environ Med; 2005 Jul; 76(7 Suppl):C75-85. PubMed ID: 16018333 [TBL] [Abstract][Full Text] [Related]
17. Neurophysiological indicators of internal attention: An fMRI-eye-tracking coregistration study. Ceh SM; Annerer-Walcher S; Koschutnig K; Körner C; Fink A; Benedek M Cortex; 2021 Oct; 143():29-46. PubMed ID: 34371378 [TBL] [Abstract][Full Text] [Related]
18. Interactions between cognitive and sensory load while planning and controlling complex gait adaptations in Parkinson's disease. Pieruccini-Faria F; Ehgoetz Martens KA; Silveira CR; Jones JA; Almeida QJ BMC Neurol; 2014 Dec; 14():250. PubMed ID: 25528474 [TBL] [Abstract][Full Text] [Related]
19. Freezing of Gait in Parkinson's Disease: An Overload Problem? Beck EN; Ehgoetz Martens KA; Almeida QJ PLoS One; 2015; 10(12):e0144986. PubMed ID: 26678262 [TBL] [Abstract][Full Text] [Related]
20. Gazing into Thin Air: The Dual-Task Costs of Movement Planning and Execution during Adaptive Gait. Ellmers TJ; Cocks AJ; Doumas M; Williams AM; Young WR PLoS One; 2016; 11(11):e0166063. PubMed ID: 27824937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]